-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
444 lines (351 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import argparse
import math
import time
from tqdm import tqdm
import config
from src.model import Transformer, BiTransformer, Translator
from dataset import TranslationDataset
# from transformer.Optim import ScheduledOptim
from transformer import Constants
import numpy as np
def prepare_dataloaders(data, opt):
# ========= Preparing DataLoader =========#
N = data['settings']['n_instances']
train_len = int(N * opt.split)
start_idx = int(opt.offset * N)
print("Data split: {}".format(opt.split))
print("Training starts at: {} out of {} instances".format(start_idx, N))
if start_idx + train_len < N:
train_src_insts = data['src'][start_idx: start_idx + train_len]
train_tgt_insts = data['tgt'][start_idx: start_idx + train_len]
train_tgt_nums = data['tgt_nums'][start_idx: start_idx + train_len]
valid_src_insts = data['src'][start_idx + train_len:] + data['src'][:start_idx]
valid_tgt_insts = data['tgt'][start_idx + train_len:] + data['tgt'][:start_idx]
valid_tgt_nums = data['tgt_nums'][start_idx + train_len:] + data['tgt_nums'][:start_idx]
else:
valid_len = N - train_len
valid_start_idx = start_idx - valid_len
train_src_insts = data['src'][start_idx:] + data['src'][:valid_start_idx]
train_tgt_insts = data['tgt'][start_idx:] + data['tgt'][:valid_start_idx]
train_tgt_nums = data['tgt_nums'][start_idx:] + data['tgt_nums'][:valid_start_idx]
valid_src_insts = data['src'][valid_start_idx: start_idx]
valid_tgt_insts = data['tgt'][valid_start_idx: start_idx]
valid_tgt_nums = data['tgt_nums'][valid_start_idx: start_idx]
train_loader = torch.utils.data.DataLoader(
TranslationDataset(
src_word2idx=data['dict']['src'],
tgt_word2idx=data['dict']['tgt'],
src_insts=train_src_insts,
tgt_insts=train_tgt_insts,
tgt_nums=train_tgt_nums,
permute_tgt=False),
num_workers=2,
batch_size=opt.batch_size,
# collate_fn=collate_fn,
shuffle=True)
valid_loader = torch.utils.data.DataLoader(
TranslationDataset(
src_word2idx=data['dict']['src'],
tgt_word2idx=data['dict']['tgt'],
src_insts=valid_src_insts,
tgt_insts=valid_tgt_insts,
tgt_nums=valid_tgt_nums,
permute_tgt=False),
num_workers=2,
batch_size=opt.batch_size)
# collate_fn=collate_fn)
if opt.bi:
train_loader.collate_fn = train_loader.dataset.bidirectional_collate_fn
valid_loader.collate_fn = valid_loader.dataset.bidirectional_collate_fn
else:
train_loader.collate_fn = train_loader.dataset.paired_collate_fn
valid_loader.collate_fn = valid_loader.dataset.paired_collate_fn
return train_loader, valid_loader
class Scheduler():
'''A simple wrapper class for learning rate scheduling'''
def __init__(self, optimizer, n_current_steps=0, alpha=1e-7, update_steps=100):
self._optimizer = optimizer
self.n_current_steps = n_current_steps
self.init_lr = alpha
self.update_steps = update_steps
def step_and_update_lr(self):
"Step with the inner optimizer"
self._update_learning_rate()
self._optimizer.step()
def zero_grad(self):
"Zero out the gradients by the inner optimizer"
self._optimizer.zero_grad()
def _get_lr_scale(self):
return np.power(0.5, self.n_current_steps // self.update_steps)
def _update_learning_rate(self):
''' Learning rate scheduling per step '''
# self.n_current_steps += 1
lr = self.init_lr * self._get_lr_scale()
for param_group in self._optimizer.param_groups:
param_group['lr'] = lr
def cal_performance(pred, gold, smoothing=False, weight=None):
''' Apply label smoothing if needed '''
loss = cal_loss(pred, gold, smoothing, weight)
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
non_pad_mask = gold.ne(Constants.PAD)
n_correct = pred.eq(gold)
n_correct = n_correct.masked_select(non_pad_mask).sum().item()
return loss, n_correct
def cal_loss(pred, gold, smoothing, weight):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.1
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = gold.ne(Constants.PAD)
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).sum() # average later
else:
loss = F.cross_entropy(pred, gold, weight=weight, ignore_index=Constants.PAD, reduction='sum')
return loss
def train_epoch(model, training_data, optimizer, device, smoothing, **kwargs):
''' Epoch operation in training phase'''
model.train()
optimizer.n_current_steps += 1
total_loss = 0
n_word_total = 0
n_word_correct = 0
weight = kwargs['weight']
bidirectional = kwargs['bidirectional']
for batch in tqdm(
training_data, mininterval=2,
desc=' - (Training) ', leave=False):
optimizer.zero_grad()
if bidirectional:
# forward
src_seq, src_pos, tgt_seq, tgt_seq_reversed, tgt_pos, *_ = map(lambda x: x.to(device), batch)
gold_lr = tgt_seq[:, 1:]
gold = gold_lr # another name, for convenience
gold_rl = tgt_seq_reversed[:, 1:]
pred_lr, pred_rl = model(src_seq, src_pos, tgt_seq, tgt_seq_reversed, tgt_pos)
loss_lr, n_correct_lr = cal_performance(pred_lr, gold_lr, smoothing=smoothing, weight=weight)
loss_rl, n_correct_rl = cal_performance(pred_rl, gold_rl, smoothing=smoothing, weight=weight)
loss = 0.5 * (loss_lr + loss_rl)
n_correct = 0.5 * (n_correct_lr + n_correct_rl)
else:
# forward
src_seq, src_pos, tgt_seq, tgt_pos, *_ = map(lambda x: x.to(device), batch)
gold = tgt_seq[:, 1:]
pred = model(src_seq, src_pos, tgt_seq, tgt_pos)
loss, n_correct = cal_performance(pred, gold, smoothing=smoothing, weight=weight)
# backward
loss.backward()
# print(loss)
# update parameters
optimizer.step_and_update_lr()
# print("get_lr_scale", optimizer._get_lr_scale())
# note keeping
total_loss += loss.item()
non_pad_mask = gold.ne(Constants.PAD)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
def eval_epoch(model, validation_data, device, **kwargs):
''' Epoch operation in evaluation phase '''
weight = kwargs['weight']
bidirectional = kwargs['bidirectional']
model.eval()
total_loss = 0
n_word_total = 0
n_word_correct = 0
with torch.no_grad():
for batch in tqdm(
validation_data, mininterval=2,
desc=' - (Validation) ', leave=False):
if bidirectional:
src_seq, src_pos, tgt_seq, tgt_seq_reversed, tgt_pos, *_ = map(lambda x: x.to(device), batch)
gold_lr = tgt_seq[:, 1:]
gold = gold_lr # another name, for convenience
gold_rl = tgt_seq_reversed[:, 1:]
pred_lr, pred_rl = model(src_seq, src_pos, tgt_seq, tgt_seq_reversed, tgt_pos)
loss_lr, n_correct_lr = cal_performance(pred_lr, gold_lr, weight=weight)
loss_rl, n_correct_rl = cal_performance(pred_rl, gold_rl, weight=weight)
loss = 0.5 * (loss_lr + loss_rl)
n_correct = 0.5 * (n_correct_lr + n_correct_rl)
else:
src_seq, src_pos, tgt_seq, tgt_pos, *_ = map(lambda x: x.to(device), batch)
gold = tgt_seq[:, 1:]
pred = model(src_seq, src_pos, tgt_seq, tgt_pos)
loss, n_correct = cal_performance(pred, gold, weight=weight)
# note keeping
total_loss += loss.item()
non_pad_mask = gold.ne(Constants.PAD)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
def train_transformer(model, training_data, validation_data, optimizer, device, opt):
''' Start training '''
log_train_file = None
log_valid_file = None
if opt.log:
log_train_file = opt.log + '.train.log'
log_valid_file = opt.log + '.valid.log'
print('[Info] Training performance will be written to file: {} and {}'.format(
log_train_file, log_valid_file))
with open(log_train_file, 'w') as log_tf, open(log_valid_file, 'w') as log_vf:
log_tf.write('epoch,loss,ppl,accuracy\n')
log_vf.write('epoch,loss,ppl,accuracy\n')
if opt.ops_idx is not None:
# compute class weights
tgt_vocab_size = len(training_data.dataset.tgt_word2idx)
weight = torch.ones(tgt_vocab_size, dtype=torch.float)
if torch.cuda.is_available():
weight = weight.cuda()
for item in opt.ops_idx:
weight[item] *= 5 # 5 times the loss
else:
weight = None
valid_accus = []
for epoch_i in range(opt.epoch):
print('[ Epoch', epoch_i, ']')
start = time.time()
train_loss, train_accu = train_epoch(
model, training_data, optimizer, device, smoothing=opt.label_smoothing, weight=weight, bidirectional=opt.bi)
print(' - (Training) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(train_loss, 100)), accu=100*train_accu,
elapse=(time.time()-start)/60))
start = time.time()
valid_loss, valid_accu = eval_epoch(model, validation_data, device, weight=weight, bidirectional=opt.bi)
print(' - (Validation) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(valid_loss, 100)), accu=100*valid_accu,
elapse=(time.time()-start)/60))
valid_accus += [valid_accu]
model_state_dict = model.state_dict()
checkpoint = {
'model': model_state_dict,
'settings': opt,
'epoch': epoch_i}
if opt.save_model:
if opt.save_mode == 'all':
model_name = opt.save_model + '_accu_{accu:3.3f}.chkpt'.format(accu=100*valid_accu)
torch.save(checkpoint, model_name)
elif opt.save_mode == 'best':
model_name = opt.save_model + '.chkpt'
if valid_accu >= max(valid_accus):
torch.save(checkpoint, model_name)
print(' - [Info] The checkpoint file has been updated.')
elif opt.save_mode == 'interval':
if (epoch_i + 1) % 50 == 0:
model_name = opt.save_model + '{}.chkpt'.format(epoch_i+1)
torch.save(checkpoint, model_name)
else:
model_name = opt.save_model + '.chkpt'
torch.save(checkpoint, model_name)
if log_train_file and log_valid_file:
with open(log_train_file, 'a') as log_tf, open(log_valid_file, 'a') as log_vf:
log_tf.write('{epoch},{loss: 8.5f},{ppl: 8.5f},{accu:3.3f}\n'.format(
epoch=epoch_i, loss=train_loss,
ppl=math.exp(min(train_loss, 100)), accu=100*train_accu))
log_vf.write('{epoch},{loss: 8.5f},{ppl: 8.5f},{accu:3.3f}\n'.format(
epoch=epoch_i, loss=valid_loss,
ppl=math.exp(min(valid_loss, 100)), accu=100*valid_accu))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-data', required=True)
parser.add_argument('-split', type=float, default=0.8, help="portion for training")
parser.add_argument('-offset', type=float, default=0, help="determin starting index of training set, for cross validation")
parser.add_argument('-epoch', type=int, default=250)
# parser.add_argument('-batch_size', type=int, default=128)
parser.add_argument('-batch_size', type=int, default=64)
parser.add_argument('-bi', action='store_true')
parser.add_argument('-d_word_vec', type=int, default=300,
help="dimension of src text word vectors")
parser.add_argument('-d_model', type=int, default=512,
help='size of encoder layer above embedding layer')
parser.add_argument('-d_inner_hid', type=int, default=2048)
parser.add_argument('-d_k', type=int, default=64)
parser.add_argument('-d_v', type=int, default=64)
parser.add_argument('-n_head', type=int, default=8)
parser.add_argument('-n_layers', type=int, default=3)
# parser.add_argument('-n_warmup_steps', type=int, default=4000)
parser.add_argument('-dropout', type=float, default=0.1)
parser.add_argument('-embs_share_weight', action='store_true')
parser.add_argument('-proj_share_weight', action='store_true')
parser.add_argument('-log', default=None)
parser.add_argument('-save_model', default=None)
parser.add_argument('-save_mode', type=str, choices=['all', 'best', 'interval', 'last'], default='last')
parser.add_argument('-no_cuda', action='store_true')
parser.add_argument('-label_smoothing', action='store_true')
parser.add_argument('-load_model', type=str, default=None, help='load pretrained model')
opt = parser.parse_args()
opt.cuda = not opt.no_cuda
# opt.d_word_vec = opt.d_model
# ========= Loading Dataset =========#
data = torch.load(opt.data)
opt.max_token_seq_len = data['settings']['max_token_seq_len']
training_data, validation_data = prepare_dataloaders(data, opt)
opt.src_vocab_size = training_data.dataset.src_vocab_size
opt.tgt_vocab_size = training_data.dataset.tgt_vocab_size
ops_idx = [data['dict']['tgt'][s] for s in ('+', '-', '*', '/')]
# ops_idx = None
opt.ops_idx = ops_idx # indexes of operators
# ========= Preparing Model =========#
if opt.embs_share_weight:
assert training_data.dataset.src_word2idx == training_data.dataset.tgt_word2idx, \
'The src/tgt word2idx table are different but asked to share word embedding.'
print(opt)
device = torch.device('cuda' if opt.cuda else 'cpu')
if opt.bi:
transformer = BiTransformer(
opt.src_vocab_size,
opt.tgt_vocab_size,
opt.max_token_seq_len,
tgt_emb_prj_weight_sharing=opt.proj_share_weight,
emb_src_tgt_weight_sharing=opt.embs_share_weight,
d_k=opt.d_k,
d_v=opt.d_v,
d_model=opt.d_model,
d_word_vec=opt.d_word_vec, # src word vector dimension
d_inner=opt.d_inner_hid,
n_layers=opt.n_layers,
n_head=opt.n_head,
dropout=opt.dropout,
embedding_matrix=data['src_embeddings']).to(device)
else:
transformer = Transformer(
opt.src_vocab_size,
opt.tgt_vocab_size,
opt.max_token_seq_len,
tgt_emb_prj_weight_sharing=opt.proj_share_weight,
emb_src_tgt_weight_sharing=opt.embs_share_weight,
d_k=opt.d_k,
d_v=opt.d_v,
d_model=opt.d_model,
d_word_vec=opt.d_word_vec, # src word vector dimension
d_inner=opt.d_inner_hid,
n_layers=opt.n_layers,
n_head=opt.n_head,
dropout=opt.dropout,
embedding_matrix=data['src_embeddings']).to(device)
optimizer = Scheduler(
optim.Adam(
filter(lambda x: x.requires_grad, transformer.parameters()),
betas=(0.9, 0.98), eps=1e-09),
alpha=5e-5, n_current_steps=0) # 5e-5
if opt.load_model is not None:
checkpoint = torch.load(opt.load_model)
transformer.load_state_dict(checkpoint['model'])
train_transformer(transformer, training_data, validation_data, optimizer, device, opt)
if __name__ == '__main__':
main()