-
Notifications
You must be signed in to change notification settings - Fork 16
/
Surface Follow
534 lines (460 loc) · 19.9 KB
/
Surface Follow
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# You are at the top. Notice there are no bats hanging from the ceiling
# If there are weird bind errors like the mesh is not deforming correctly, compare
# the oct version of closest triangles to the one without oct
bl_info = {
"name": "Surface Follow",
"author": "Rich Colburn, email: [email protected]",
"version": (1, 0),
"blender": (2, 78, 0),
"location": "View3D > Extended Tools > Surface Follow",
"description": "Doforms an object as the surface of another object changes",
"warning": "Do not use if you are pregnant or have ever met someone who was pregnant",
"wiki_url": "",
"category": '3D View'}
import bpy
import numpy as np
np.seterr(all='ignore')
import bmesh
import time
def rotate_around_axis(coords, Q, origin='empty'):
'''Uses standard quaternion to rotate a vector. Q requires
a 4-dimensional vector. coords is the 3d location of the point.
coords can also be an N x 3 array of vectors. Happens to work
with Q as a tuple or a np array shape 4'''
if origin == 'empty':
vcV = np.cross(Q[1:], coords)
RV = np.nan_to_num(coords + vcV * (2*Q[0]) + np.cross(Q[1:],vcV)*2)
else:
coords -= origin
vcV = np.cross(Q[1:],coords)
RV = (np.nan_to_num(coords + vcV * (2*Q[0]) + np.cross(Q[1:],vcV)*2)) + origin
coords += origin #undo in-place offset
return RV
def transform_matrix(V, ob='empty', back=False):
'''Takes a vector and returns it with the
object transforms applied. Also works
on N x 3 array of vectors'''
if ob == 'empty':
ob = bpy.context.object
ob.rotation_mode = 'QUATERNION'
if back:
rot = np.array(ob.rotation_quaternion)
rot[1:] *= -1
V -= np.array(ob.location)
rotated = rotate_around_axis(V, rot)
rotated /= np.array(ob.scale)
return rotated
rot = np.array(ob.rotation_quaternion)
rotated = rotate_around_axis(V, rot)
return np.array(ob.location) + rotated * np.array(ob.scale)
def set_key_coords(coords, key, ob):
"""Writes a flattened array to one of the object's shape keys."""
ob.data.shape_keys.key_blocks[key].data.foreach_set("co", coords.ravel())
ob.data.update()
# Workaround for dependancy graph issue
ob.data.shape_keys.key_blocks[key].mute = True
ob.data.shape_keys.key_blocks[key].mute = False
def get_triangle_normals(tri_coords):
'''does the same as get_triangle_normals
but I need to compare their speed'''
t0 = tri_coords[:, 0]
t1 = tri_coords[:, 1]
t2 = tri_coords[:, 2]
return np.cross(t1 - t0, t2 - t0), t0
def get_bmesh(ob='empty'):
'''Returns a bmesh. Works either in edit or object mode.
ob can be either an object or a mesh.'''
obm = bmesh.new()
if ob == 'empty':
mesh = bpy.context.object.data
if 'data' in dir(ob):
mesh = ob.data
if ob.mode == 'OBJECT':
obm.from_mesh(mesh)
elif ob.mode == 'EDIT':
obm = bmesh.from_edit_mesh(mesh)
else:
mesh = ob
obm.from_mesh(mesh)
return obm
def set_coords(coords, ob='empty', use_proxy='empty'):
"""Writes a flattened array to the object. Second argument is for reseting
offsets created by modifiers to avoid compounding of modifier effects"""
if ob == 'empty':
ob = bpy.context.object
if use_proxy == 'empty':
ob.data.vertices.foreach_set("co", coords.ravel())
else:
coords += use_proxy
ob.data.vertices.foreach_set("co", coords.ravel())
ob.data.update()
def get_coords(ob='empty', proxy=False):
'''Creates an N x 3 numpy array of vertex coords. If proxy is used the
coords are taken from the object specified with modifiers evaluated.
For the proxy argument put in the object: get_coords(ob, proxy_ob)'''
if ob == 'empty':
ob = bpy.context.object
if proxy:
mesh = proxy.to_mesh(bpy.context.scene, True, 'PREVIEW')
verts = mesh.vertices
else:
verts = ob.data.vertices
v_count = len(verts)
coords = np.zeros(v_count * 3)
verts.foreach_get("co", coords)
if proxy:
bpy.data.meshes.remove(mesh)
return coords.reshape(v_count, 3)
def triangulate(ob='empty', proxy=False):
'''Requires a mesh. Returns an index array for viewing
the coordinates as triangles. Store this!!! rather than recalculating
every time. !!!Could use for_each_get with the mesh and polygons if
all the faces have 3 points!!! Could also write bmesh to mesh and use
foreach_get'''
if ob == 'empty':
ob = bpy.context.object
if proxy:
mods = True
else:
mods = False
proxy = ob.to_mesh(bpy.context.scene, mods, 'PREVIEW')
obm = get_bmesh(proxy)
bmesh.ops.triangulate(obm, faces=obm.faces)
obm.to_mesh(proxy)
count = len(proxy.polygons)
tri_idx = np.zeros(count * 3, dtype=np.int64)
proxy.polygons.foreach_get('vertices', tri_idx)
bpy.data.meshes.remove(proxy)
obm.free()
return tri_idx.reshape(count, 3)
def barycentric_generate(hits, tris):
'''Create scalars to be used by points and triangles'''
# where the hit lands on the two tri vecs
tv = tris[:, 1] - tris[:, 0]
hv = hits - tris[:, 0]
d1a = np.einsum('ij, ij->i', hv, tv)
d1b = np.einsum('ij, ij->i', tv, tv)
scalar1 = np.nan_to_num(d1a / d1b)
t2v = tris[:, 2] - tris[:, 0]
d2a = np.einsum('ij, ij->i', hv, t2v)
d2b = np.einsum('ij, ij->i', t2v, t2v)
scalar2 = np.nan_to_num(d2a / d2b)
# closest point on edge segment between the two points created above
cp1 = tv * np.expand_dims(scalar1, axis=1)
cp2 = t2v * np.expand_dims(scalar2, axis=1)
cpvec = cp2 - cp1
cp1_at = tris[:,0] + cp1
hcp = hits - cp1_at # this is cp3 above. Not sure what's it's for yet
dhcp = np.einsum('ij, ij->i', hcp, cpvec)
d3b = np.einsum('ij, ij->i', cpvec, cpvec)
hcp_scalar = np.nan_to_num(dhcp / d3b)
hcp_vec = cpvec * np.expand_dims(hcp_scalar, axis=1)
# base of tri on edge between first two points
d3 = np.einsum('ij, ij->i', -cp1, cpvec)
scalar3 = np.nan_to_num(d3 / d3b)
base_cp_vec = cpvec * np.expand_dims(scalar3, axis=1)
base_on_span = cp1_at + base_cp_vec
# Where the point occurs on the edge between the base of the triangle
# and the cpoe of the base of the triangle on the cpvec
base_vec = base_on_span - tris[:,0]
dba = np.einsum('ij, ij->i', hv, base_vec)
dbb = np.einsum('ij, ij->i', base_vec, base_vec)
scalar_final = np.nan_to_num(dba / dbb)
p_on_bv = base_vec * np.expand_dims(scalar_final, axis=1)
perp = (p_on_bv) - (cp1 + base_cp_vec)
return scalar1, scalar2, hcp_scalar, scalar3, scalar_final
def barycentric_remap_multi(tris, sc1, sc2, sc3, sc4, sc5, scale):
'''Uses the scalars generated by barycentric_generate() to remap the points
on the triangles and off the surface as the surface mesh changes'''
# where the hit lands on the two tri vecs
tv = tris[:, 1] - tris[:, 0]
t2v = tris[:, 2] - tris[:, 0]
# closest point on edge segment between the two points created above
cp1 = tv * np.expand_dims(sc1, axis=1)
cp2 = t2v * np.expand_dims(sc2, axis=1)
cpvec = cp2 - cp1
cp1_at = tris[:,0] + cp1
hcp_vec = cpvec * np.expand_dims(sc3, axis=1)
# base of tri on edge between first two points
base_cp_vec = cpvec * np.expand_dims(sc4, axis=1)
base_on_span = cp1_at + base_cp_vec
# Where the point occurs on the edge between the base of the triangle
# and the cpoe of the base of the triangle on the cpvec
base_vec = base_on_span - tris[:,0]
p_on_bv = base_vec * np.expand_dims(sc5, axis=1)
perp = (p_on_bv) - (cp1 + base_cp_vec)
# get the average length of the two vectors and apply it to the cross product
cross = np.cross(tv, t2v)
sq = np.sqrt(np.einsum('ij,ij->i', cross, cross))
x1 = np.einsum('ij,ij->i', tv, tv)
x2 = np.einsum('ij,ij->i', t2v, t2v)
av_root = np.sqrt((x1 + x2) / 2)
cr_root = (cross / np.expand_dims(sq, axis=1)) * np.expand_dims(av_root * scale, axis=1)
return tris[:,0] + cp1 + hcp_vec + perp + cr_root
def project_points(points, tri_coords):
'''Using this to get the points off the surface
Takes the average length of two vecs off triangles
and applies it to the length of the normals.
This way the normal scales with the mesh and with
changes to the individual triangle vectors'''
t0 = tri_coords[:, 0]
t1 = tri_coords[:, 1]
t2 = tri_coords[:, 2]
tv1 = t1 - t0
tv2 = t2 - t0
cross = np.cross(tv1, tv2)
# get the average length of the two vectors and apply it to the cross product
sq = np.sqrt(np.einsum('ij,ij->i', cross, cross))
x1 = np.einsum('ij,ij->i', tv1, tv1)
x2 = np.einsum('ij,ij->i', tv2, tv2)
av_root = np.sqrt((x1 + x2) / 2)
cr_root = (cross / np.expand_dims(sq, axis=1)) * np.expand_dims(av_root, axis=1)
v1 = points - t0
v1_dots = np.einsum('ij,ij->i', cr_root, v1)
n_dots = np.einsum('ij,ij->i', cr_root, cr_root)
scale = np.nan_to_num(v1_dots / n_dots)
offset = cr_root * np.expand_dims(scale, axis=1)
drop = points - offset # The drop is used by the barycentric generator as points in the triangles
return drop, scale
def nearest_triangles(surface_coords, follower_coords, tris):
'''Basic N-squared method for getting triangls.
Slow on large sets. Using octree instead''' # Before there were octrees...
follow_co = follower_coords.astype(np.float32) # There were huge sets of tiles.
surface_co = surface_coords.astype(np.float32) # Before the dark times. Before the empire.
means = np.mean(surface_co[tris], axis=1)
difs = np.expand_dims(follow_co, axis=1) - means
dots = np.einsum('ijk, ijk->ij', difs, difs)
sorts = np.argmin(dots, axis=1)
return sorts
def nearest_triangles_oct(surface_coords, follower_coords, tris): # octree
'''Use octree to find nearest triangles centers'''
# yes I really created an octree inline. What's the world coming to... I know, I know
follow_co = follower_coords.astype(np.float32)
surface_co = surface_coords.astype(np.float32)
fill_me = np.zeros(len(follow_co), dtype=np.int)
means = np.mean(surface_co[tris], axis=1)
# 2: Get the mean of the surface tri means.
box_mean = np.mean(means, axis=0)
#bpy.data.objects['Empty'].location = box_mean
# 3: Make 8 boxes:
s1 = means < np.expand_dims(box_mean, axis=0)
b0 = np.all(s1, axis=1)
m0 = np.mean(means[b0], axis=0)
s1[:,0] = -s1[:,0]
b1 = np.all(s1, axis=1)
m1 = np.mean(means[b1], axis=0)
s1[:,1] = -s1[:,1]
b2 = np.all(s1, axis=1)
m2 = np.mean(means[b2], axis=0)
s1[:,0] = -s1[:,0]
b3 = np.all(s1, axis=1)
m3 = np.mean(means[b3], axis=0)
s1[:,2] = -s1[:,2]
b4 = np.all(s1, axis=1)
m4 = np.mean(means[b4], axis=0)
s1[:,0] = -s1[:,0]
b5 = np.all(s1, axis=1)
m5 = np.mean(means[b5], axis=0)
s1[:,1] = -s1[:,1]
b6 = np.all(s1, axis=1)
m6 = np.mean(means[b6], axis=0)
s1[:,0] = -s1[:,0]
b7 = np.all(s1, axis=1)
m7 = np.mean(means[b7], axis=0)
m_list = np.array([m0, m1, m2, m3, m4, m5, m6, m7])
m_b_dif = m_list - box_mean
mean_mags = np.sqrt(np.einsum('ij,ij->i', m_b_dif, m_b_dif)) * 1.1# between the mean box and the means
# Here we convert the octree into eightballs to eliminate special case distance errors. ?octballs?
inny = []
eight = np.arange(8)
for i in eight:
dif = means - m_list[i]
dist = np.sqrt(np.einsum('ij,ij->i', dif, dif))
in_range = dist < mean_mags[i]
inny.append(in_range)
# For reference the above code can be done without iterating (it's about the same speed if not slower)
#dif = np.expand_dims(means, axis=1) - m_list
#d = np.sqrt(np.einsum('ijk, ijk->ij', dif, dif))
#inny = (d < mean_mags).T
b_list = np.array(inny) # first cull step, eliminate boxes with no tris.
b_pos = np.any(b_list, axis=1) # first cull step, eliminate boxes with no tris.
box_set = b_list[b_pos] # bool of only the sets of triangles in boxes
mean_set = m_list[b_pos]
m_f_dif = np.expand_dims(follow_co, axis=1) - mean_set
m_f_d = np.einsum('ijk, ijk->ij', m_f_dif, m_f_dif)
m_f_min = np.argmin(m_f_d, axis=1) # which box is the closest to each vert
tri_indexer = np.arange(len(means))
for i in range(len(box_set)):
dif = np.expand_dims(follow_co[m_f_min == i], axis=1) - means[box_set[i]]
dif_d = np.einsum('ijk, ijk->ij', dif, dif)
amin = np.argmin(dif_d, axis=1)
trises = tri_indexer[box_set[i]][amin] # ! ding ding ding, now need the verts in the follow
vertses = m_f_min == i
fill_me[vertses] = trises
return fill_me
def multi_bind():
x = 5
obj = bpy.context.object
if obj == None:
return -1
list = [i for i in bpy.context.selected_objects if i.type == 'MESH']
count = len(list)
# sort active object and cull objects that are not meshes:
if count < 2:
return -1
di = bpy.context.scene.surface_follow_data_set
di['surfaces'][obj.name] = obj
di_followers = di['objects']
for i in bpy.context.selected_objects:
if (i.type == 'MESH') & (i != obj):
if i.data.shape_keys == None:
i.shape_key_add('Basis')
if 'surface follow' not in i.data.shape_keys.key_blocks:
i.shape_key_add('surface follow')
i.data.shape_keys.key_blocks['surface follow'].value=1
a = transform_matrix(get_coords(obj, obj), obj)
b = transform_matrix(get_coords(i), i)
tris = triangulate(obj, proxy=True)
#reg = nearest_triangles(a, b, tris)
oct = nearest_triangles_oct(a, b, tris)
tri_indexer = tris[oct]
tri_coords = a[tri_indexer]
hits, length = project_points(b, tri_coords)
scalars = barycentric_generate(hits, a[tri_indexer])
# Create dictionary items:
di_followers[i.name] = {}
di_followers[i.name]['surface'] = obj
di_followers[i.name]['tri_indexer'] = tri_indexer
di_followers[i.name]['scalars'] = scalars
di_followers[i.name]['length'] = length
di_followers[i.name]['surface_coords'] = a
def multi_update():
obs = bpy.data.objects
di = bpy.context.scene.surface_follow_data_set
s_coords = {}
# if an object no longer has valid data it goes into a list to be deleted when done iterating
cull_list = []
for i in di['surfaces']:
try:
s_coords[i] = transform_matrix(get_coords(obs[i], obs[i]), obs[i])
except (KeyError, RuntimeError):
cull_list.append(i)
#for i in di['objects']:
for i, value in di['objects'].items():
try:
child = obs[i]
coords = s_coords[value['surface'].name]
project = barycentric_remap_multi(coords[value['tri_indexer']], value['scalars'][0], value['scalars'][1], value['scalars'][2], value['scalars'][3], value['scalars'][4], value['length'])
set_key_coords(transform_matrix(project, child, back=True), 'surface follow', child)
except (KeyError, RuntimeError):
cull_list.append(i)
for i in cull_list:
del i
def test_thingy():
print('doing something every frame (like bathing or possibly eating a mountain goat)')
def run_handler(scene, override=False):
multi_update()
#test_thingy()
def remove_handler(type):
'''Deletes handler from the scene'''
if type == 'scene':
if run_handler in bpy.app.handlers.scene_update_pre:
bpy.app.handlers.scene_update_pre.remove(run_handler)
if type == 'frame':
if run_handler in bpy.app.handlers.frame_change_post:
bpy.app.handlers.frame_change_post.remove(run_handler)
def add_handler(type):
'''adds handler from the scene'''
if type == 'scene':
bpy.app.handlers.scene_update_pre.append(run_handler)
if type == 'frame':
bpy.app.handlers.frame_change_post.append(run_handler)
# run on prop callback
def toggle_display(self, context):
if bpy.context.scene.surface_follow_on:
add_handler('scene')
remove_handler('frame')
bpy.context.scene['surface_follow_frame'] = False
elif bpy.context.scene.surface_follow_frame:
add_handler('frame')
remove_handler('scene')
bpy.context.scene['surface_follow_on'] = False
else:
remove_handler('scene')
remove_handler('frame')
# Properties-----------------------------------:
def create_properties():
bpy.types.Scene.surface_follow_on = bpy.props.BoolProperty(name="Scene Update",
description="For toggling the dynamic tension map",
default=False, update=toggle_display)
bpy.types.Scene.surface_follow_frame = bpy.props.BoolProperty(name="Frame Update",
description="For toggling the dynamic tension map",
default=False, update=toggle_display)
bpy.types.Scene.surface_follow_data_set = {}
bpy.types.Scene.surface_follow_data_set['surfaces'] = {}
bpy.types.Scene.surface_follow_data_set['objects'] = {}
def remove_properties():
'''Walks down the street and gets me a coffee'''
del(bpy.types.Scene.surface_follow_on)
del(bpy.types.Scene.surface_follow_frame)
del(bpy.types.Scene.surface_follow_data_set)
# Create Classes-------------------------------:
class BindToSurface(bpy.types.Operator):
'''Bind To Surface'''
bl_idname = "scene.bind_to_surface"
bl_label = "bind to surface"
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
x = multi_bind()
if x == -1:
self.report({'ERROR'}, 'Select at least two objects')
return {'FINISHED'}
class ToggleSurfaceFollow(bpy.types.Operator):
'''Toggle Surface Follow Update'''
bl_idname = "scene.toggle_surface_follow"
bl_label = "surface follow updater"
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
toggle_display()
return {'FINISHED'}
class UpdateOnce(bpy.types.Operator):
'''Surface Update'''
bl_idname = "scene.surface_update_once"
bl_label = "update surface one time"
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
run_handler(None, True)
return {'FINISHED'}
class SurfaceFollowPanel(bpy.types.Panel):
"""Surface Follow Panel"""
bl_label = "Surface Follow Panel"
bl_idname = "Surface Panel"
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_category = "Extended Tools"
#gt_show = True
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
col.label(text="Surface Follow")
col.operator("scene.bind_to_surface", text="Bind to Surface")
col.operator("scene.surface_update_once", text="Update Once", icon='RECOVER_AUTO')
if not bpy.context.scene.surface_follow_frame:
col.prop(bpy.context.scene ,"surface_follow_on", text="Scene Update", icon='SCENE_DATA')
if not bpy.context.scene.surface_follow_on:
col.prop(bpy.context.scene ,"surface_follow_frame", text="Frame Update", icon='PLAY')
# Register Clases -------------->>>
def register():
create_properties()
bpy.utils.register_class(SurfaceFollowPanel)
bpy.utils.register_class(BindToSurface)
bpy.utils.register_class(UpdateOnce)
bpy.utils.register_class(ToggleSurfaceFollow)
def unregister():
remove_properties()
bpy.utils.unregister_class(BindToSurface)
bpy.utils.unregister_class(UpdateOnce)
bpy.utils.unregister_class(ToggleSurfaceFollow)
bpy.utils.unregister_class(SurfaceFollowPanel)
if __name__ == "__main__":
register()