forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.py
261 lines (222 loc) · 9.41 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import oneflow as flow
from oneflow.nn.parallel import DistributedDataParallel as ddp
from utils.ofrecord_data_utils import OFRecordDataLoader, SyntheticDataLoader
from utils.utils_logging import AverageMeter
from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint
from backbones import get_model
from graph import TrainGraph, EvalGraph
from utils.losses import CrossEntropyLoss_sbp
import logging
def make_data_loader(args, mode, is_consistent=False, synthetic=False):
assert mode in ("train", "validation")
if mode == "train":
total_batch_size = args.batch_size*flow.env.get_world_size()
batch_size = args.batch_size
num_samples = args.num_image
else:
total_batch_size = args.val_global_batch_size
batch_size = args.val_batch_size
num_samples = args.val_samples_per_epoch
placement = None
sbp = None
if is_consistent:
placement = flow.env.all_device_placement("cpu")
sbp = flow.sbp.split(0)
batch_size = total_batch_size
if synthetic:
data_loader = SyntheticDataLoader(
batch_size=batch_size,
num_classes=args.num_classes,
placement=placement,
sbp=sbp,
)
return data_loader.to("cuda")
ofrecord_data_loader = OFRecordDataLoader(
ofrecord_root=args.ofrecord_path,
mode=mode,
dataset_size=num_samples,
batch_size=batch_size,
total_batch_size=total_batch_size,
data_part_num=args.ofrecord_part_num,
placement=placement,
sbp=sbp,
)
return ofrecord_data_loader
def make_optimizer(args, model):
param_group = {"params": [p for p in model.parameters() if p is not None]}
optimizer = flow.optim.SGD(
[param_group],
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
return optimizer
class FC7(flow.nn.Module):
def __init__(self, embedding_size, num_classes, cfg, partial_fc=False, bias=False):
super(FC7, self).__init__()
self.weight = flow.nn.Parameter(
flow.empty(num_classes, embedding_size))
flow.nn.init.normal_(self.weight, mean=0, std=0.01)
self.partial_fc = partial_fc
size = flow.env.get_world_size()
num_local = (cfg.num_classes + size - 1) // size
self.num_sample = int(num_local * cfg.sample_rate)
self.total_num_sample = self.num_sample * size
def forward(self, x, label):
x = flow.nn.functional.l2_normalize(input=x, dim=1, epsilon=1e-10)
if self.partial_fc:
(
mapped_label,
sampled_label,
sampled_weight,
) = flow.distributed_partial_fc_sample(
weight=self.weight, label=label, num_sample=self.total_num_sample,
)
label = mapped_label
weight = sampled_weight
else:
weight = self.weight
weight = flow.nn.functional.l2_normalize(
input=weight, dim=1, epsilon=1e-10)
x = flow.matmul(x, weight, transpose_b=True)
if x.is_consistent:
return x, label
else:
return x
class Train_Module(flow.nn.Module):
def __init__(self, cfg, backbone, placement, world_size):
super(Train_Module, self).__init__()
self.placement = placement
if cfg.graph:
if cfg.model_parallel:
input_size = cfg.embedding_size
output_size = int(cfg.num_classes/world_size)
self.fc = FC7(input_size, output_size, cfg, partial_fc=cfg.partial_fc).to_consistent(
placement=placement, sbp=flow.sbp.split(0))
else:
self.fc = FC7(cfg.embedding_size, cfg.num_classes, cfg).to_consistent(
placement=placement, sbp=flow.sbp.broadcast)
self.backbone = backbone.to_consistent(
placement=placement, sbp=flow.sbp.broadcast)
else:
self.backbone = backbone
self.fc = FC7(cfg.embedding_size, cfg.num_classes, cfg)
def forward(self, x, labels):
x = self.backbone(x)
if x.is_consistent:
x = x.to_consistent(sbp=flow.sbp.broadcast)
x = self.fc(x, labels)
return x
class Trainer(object):
def __init__(self, cfg, placement, load_path, world_size, rank):
self.placement = placement
self.load_path = load_path
self.cfg = cfg
self.world_size = world_size
self.rank = rank
# model
self.backbone = get_model(cfg.network, dropout=0.0,
num_features=cfg.embedding_size).to("cuda")
self.train_module = Train_Module(
cfg, self.backbone, self.placement, world_size).to("cuda")
if cfg.resume:
if load_path is not None:
self.load_state_dict()
else:
logging.info("Model resume failed! load path is None ")
# optimizer
self.optimizer = make_optimizer(cfg, self.train_module)
# data
self.train_data_loader = make_data_loader(
cfg, 'train', self.cfg.graph, self.cfg.synthetic)
# loss
if cfg.loss == "cosface":
self.margin_softmax = flow.nn.CombinedMarginLoss(
1, 0., 0.4).to("cuda")
else:
self.margin_softmax = flow.nn.CombinedMarginLoss(
1, 0.5, 0.).to("cuda")
self.of_cross_entropy = CrossEntropyLoss_sbp()
# lr_scheduler
self.decay_step = self.cal_decay_step()
self.scheduler = flow.optim.lr_scheduler.MultiStepLR(
optimizer=self.optimizer, milestones=self.decay_step, gamma=0.1
)
# log
self.callback_logging = CallBackLogging(
50, rank, cfg.total_step, cfg.batch_size, world_size, None)
# val
self.callback_verification = CallBackVerification(
600, rank, cfg.val_targets, cfg.ofrecord_path, is_consistent=cfg.graph)
# save checkpoint
self.callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)
self.losses = AverageMeter()
self.start_epoch = 0
self.global_step = 0
def __call__(self):
# Train
if self.cfg.graph:
self.train_graph()
else:
self.train_eager()
def load_state_dict(self):
if self.is_consistent:
state_dict = flow.load(self.load_path, consistent_src_rank=0)
elif self.rank == 0:
state_dict = flow.load(self.load_path)
else:
return
logging.info("Model resume successfully!")
self.model.load_state_dict(state_dict)
def cal_decay_step(self):
cfg = self.cfg
num_image = cfg.num_image
total_batch_size = cfg.batch_size * self.world_size
self.warmup_step = num_image // total_batch_size * cfg.warmup_epoch
self.cfg.total_step = num_image // total_batch_size * cfg.num_epoch
logging.info("Total Step is:%d" % self.cfg.total_step)
return [x * num_image // total_batch_size for x in cfg.decay_epoch]
def train_graph(self):
train_graph = TrainGraph(self.train_module, self.cfg, self.margin_softmax,
self.of_cross_entropy, self.train_data_loader, self.optimizer, self.scheduler)
# train_graph.debug()
val_graph = EvalGraph(self.backbone, self.cfg)
for epoch in range(self.start_epoch, self.cfg.num_epoch):
self.train_module.train()
one_epoch_steps = len(self.train_data_loader)
for steps in range(one_epoch_steps):
self.global_step += 1
loss = train_graph()
loss = loss.to_consistent(
sbp=flow.sbp.broadcast).to_local().numpy()
self.losses.update(loss, 1)
self.callback_logging(self.global_step, self.losses, epoch, False,
self.scheduler.get_last_lr()[0])
self.callback_verification(
self.global_step, self.train_module, val_graph)
self.callback_checkpoint(self.global_step, epoch,
self.train_module, is_consistent=True)
def train_eager(self):
self.train_module = ddp(self.train_module)
for epoch in range(self.start_epoch, self.cfg.num_epoch):
self.train_module.train()
one_epoch_steps = len(self.train_data_loader)
for steps in range(one_epoch_steps):
self.global_step += 1
image, label = self.train_data_loader()
image = image.to("cuda")
label = label.to("cuda")
features_fc7 = self.train_module(image, label)
features_fc7 = self.margin_softmax(features_fc7, label)*64
loss = self.of_cross_entropy(features_fc7, label)
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
loss = loss.numpy()
self.losses.update(loss, 1)
self.callback_logging(self.global_step, self.losses, epoch, False,
self.scheduler.get_last_lr()[0])
self.callback_verification(self.global_step, self.backbone)
self.scheduler.step()
self.callback_checkpoint(
self.global_step, epoch, self.train_module)