-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_regression.py
39 lines (30 loc) · 1.03 KB
/
prepare_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
from glob import glob
# Order = [mlp,rbf,target]
def combine_train():
mlp_train = np.load('data/regression/mlp_train.npy').reshape(-1,1)
rbf_train = np.load('data/regression/rbf_train.npy').reshape(-1,1)
train_X = np.hstack([mlp_train,rbf_train])
return train_X
def combine_test():
mlp_test = np.load('data/regression/mlp_test.npy').reshape(-1,1)
rbf_test = np.load('data/regression/rbf_test.npy').reshape(-1,1)
test_X = np.hstack([mlp_test,rbf_test])
return test_X
def get_target_values():
target_train = np.load('data/regression/trainY.npy')
target_test = np.load('data/regression/testY.npy')
return target_train,target_test
def save_data():
train_X = combine_train()
test_X = combine_test()
target_train,target_test = get_target_values()
train = np.hstack([train_X,target_train])
test = np.hstack([test_X,target_test])
np.save('data/regression/train_ens.npy',train)
print train.shape
np.save('data/regression/test_ens.npy',test)
print test.shape
if __name__ == '__main__':
save_data()