-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imdb.py
184 lines (164 loc) · 5.8 KB
/
train_imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
Trains GPT2 on IMDB dataset
"""
from enum import Enum
from pathlib import Path
from typing import List, Optional, Union, Type
import torch
import typer
from datasets import load_dataset, Dataset, DatasetDict
from transformers import (
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
BatchEncoding,
GPT2LMHeadModel,
)
from conditionme.decision_gpt2_lm_head import DecisionGPT2LMHeadModel
from conditionme.decision_gpt2_tokenize import batch_tokenize_gpt2, create_decision_tokenizer, DecisionTokenizer
from conditionme.reward_models.imdb_reward_model import ImdbRewardModel
from conditionme.scaling.scaler import (
RewardScaler,
get_scaler, ScalerOptions,
)
from conditionme.statistics.calculate_distribution import (
calculate_distribution_statistics,
)
from examples.imdb.evaluate_imdb import evaluate_test_set
class GPT2ModelOptions(Enum):
# see https://huggingface.co/transformers/v2.2.0/pretrained_models.html
gpt2 = "gpt2"
gpt2_medium = "gpt2-medium"
gpt2_large = "gpt2-large"
gpt2_xl = "gpt2-xl"
def batch_scale(
batch: BatchEncoding,
scaler: RewardScaler,
) -> BatchEncoding:
# scale the reward
scaled_reward = scaler.scale_rewards(batch["target_rewards"])
# replace the reward with the scaled reward
batch["target_rewards"] = scaled_reward
return batch
def train_imdb(
batch_size: int,
epochs: int,
save_dir: Path,
decision_tokenizer: DecisionTokenizer,
decision_model: DecisionGPT2LMHeadModel,
learning_rate: float,
# must contain "train", "test", and "text" keys
dataset: Union[DatasetDict, Dataset],
reward_model: ImdbRewardModel,
scaler_type: Type[RewardScaler],
) -> None:
dataset_tokenized: Dataset = dataset.map( # type: ignore
# batched
lambda examples: {"target_rewards": reward_model.reward_batch(examples["text"], batch_size=32)},
batched=True,
).map(
lambda x: batch_tokenize_gpt2(
x["text"],
target_rewards=x["target_rewards"],
decision_tokenizer=decision_tokenizer,
add_eos_at_end=True,
),
batch_size=batch_size, # We don't have to pad so much if batch_size is smaller
batched=True,
)
scaler: RewardScaler = scaler_type.from_rewards(
rewards=dataset_tokenized["train"]["target_rewards"] # type: ignore
)
# update the dataset with the scaled rewards
scaled_dataset = dataset_tokenized.map(lambda x: batch_scale(x, scaler=scaler), batched=True)
# Save the scaler
scaler.save_scaler(Path(save_dir))
# log training target_rewards
training_reward_dist = calculate_distribution_statistics(
dist=scaled_dataset["train"]["target_rewards"] # type: ignore
)
print(f"Training target_rewards distribution: {training_reward_dist}")
scaled_dataset.set_format(
type="torch",
columns=[
"input_ids",
"target_rewards",
"attention_mask",
],
)
print("ok")
training_args = TrainingArguments(
output_dir=save_dir,
overwrite_output_dir=True,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
save_steps=10_000,
save_total_limit=2,
# default transformer package is 5e-5
learning_rate=learning_rate,
)
trainer = Trainer(
model=decision_model,
args=training_args,
train_dataset=scaled_dataset["train"],
tokenizer=decision_tokenizer,
data_collator=DataCollatorForLanguageModeling(tokenizer=decision_tokenizer, mlm=False),
)
trainer.train()
# Save the model
decision_model.save_pretrained(save_dir)
test_text: List[str] = scaled_dataset["test"]["text"] # type: ignore [call-overload]
evaluate_test_set(
test_text=test_text,
model=decision_model,
decision_tokenizer=decision_tokenizer,
sentiment_reward=reward_model,
limit=1000,
scaler=scaler,
save_dir=Path(save_dir),
)
def main(
batch_size: int = 1,
epochs: int = 1,
save_dir: str = "gdrive/My Drive/conditionme",
model: GPT2ModelOptions = GPT2ModelOptions.gpt2,
learning_rate: float = 5e-5,
device: Optional[str] = None,
scaler: ScalerOptions = ScalerOptions.do_nothing,
):
scaler_type: Type[RewardScaler] = get_scaler(scaler)
# Optionally save to drive
# from google.colab import drive
# drive.mount('/content/gdrive')
# Download and tokenize the dataset
imdb_dataset: Dataset = load_dataset("imdb") # type: ignore
# limit the dataset to 100 examples
# compute the reward for each example
# prefer gpu if available
device_selected: torch.device = (
torch.device(device)
if device
else (torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu"))
)
sentiment_reward = ImdbRewardModel(device=device_selected)
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left")
decision_tokenizer = create_decision_tokenizer(tokenizer)
loaded_model = GPT2LMHeadModel.from_pretrained(model.value)
gpt2_model = DecisionGPT2LMHeadModel.from_loaded_pretrained_model(loaded_model).to(device)
train_imdb(
batch_size=batch_size,
epochs=epochs,
save_dir=Path(save_dir),
decision_tokenizer=decision_tokenizer,
decision_model=gpt2_model,
learning_rate=learning_rate,
dataset=imdb_dataset,
reward_model=sentiment_reward,
scaler_type=scaler_type,
)
if __name__ == "__main__":
# run with
# export PYTHONPATH=.; python examples/imdb/train_imdb.py --batch-size 10 --epochs 1
# export PYTHONPATH=.; python examples/imdb/train_imdb.py --batch-size 1 --epochs 1 --model gpt2-medium --save-dir saved_medium --scaler min_max
typer.run(main)