-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (48 loc) · 1.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Import Libraries
import numpy as np
import pandas as pd
from sklearn import linear_model
import sklearn
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
from matplotlib import style
import pickle
"""Pickle in Python is primarily used in serializing and deserializing a Python object structure.
In other words, it's the process of converting a Python object into a byte stream to store it in a file/database,
maintain program state across sessions, or transport data over the network."""
style.use("ggplot")
data = pd.read_csv("student-mat.csv", sep=";")
predict = "G3"
data = data[["G1", "G2", "absences", "failures", "studytime", "G3"]]
data = shuffle(data) # Optional - shuffle the data
x = np.array(data.drop([predict], 1))
y = np.array(data[predict])
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.1)
# TRAIN MODEL MULTIPLE TIMES FOR BEST SCORE
best = 0
for _ in range(20):
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.1)
linear = linear_model.LinearRegression()
linear.fit(x_train, y_train)
acc = linear.score(x_test, y_test)
print("Accuracy: " + str(acc))
if acc > best:
best = acc
with open("studentgrades.pickle", "wb") as f:
pickle.dump(linear, f)
# LOAD MODEL
pickle_in = open("studentgrades.pickle", "rb")
linear = pickle.load(pickle_in)
print("-------------------------")
print('Coefficient: \n', linear.coef_)
print('Intercept: \n', linear.intercept_)
print("-------------------------")
predicted = linear.predict(x_test)
for x in range(len(predicted)):
print(predicted[x], x_test[x], y_test[x])
# Drawing and plotting model
plot = "failures"
plt.scatter(data[plot], data["G3"])
plt.xlabel(plot)
plt.ylabel("Final Grade")
plt.show()