-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
339 lines (269 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import cv # opencv
import printcore # this controls the robot
from time import time, sleep, localtime
from math import atan2, sqrt
import pickle
import numpy as np
import ParticleFilter as pf
import Som.som as Som
def mouseHandler(event, x, y, flags, param):
global droplets
if event == cv.CV_EVENT_LBUTTONDOWN:
frameCopy = cv.CreateImage(cv.GetSize(param), param.depth, param.channels)
cv.Copy(param, frameCopy)
fillResult = cv.FloodFill(frameCopy, (x,y),
cv.RGB(250,0,0),
cv.ScalarAll(2), cv.ScalarAll(2), 8 )
del(frameCopy)
# generate 2 struct element for morpho operations
# the size will be the min, to be safe
if fillResult[2][2] > fillResult[2][3]: # fillResult.rect.width > fillResult.rect.height
squareSide = fillResult[2][3]
else:
squareSide = fillResult[2][2]
# the masks need to be odd
if squareSide % 2 == 0: squareSide+=1
# we capture the average color generated by the fill area
cv.SetImageROI( param, (fillResult[2][0], fillResult[2][1],
squareSide, squareSide) )
colorAvg = cv.Avg(param)
cv.ResetImageROI(param)
# generate the new found droplet
newDroplet = { 'morpho1' : cv.CreateStructuringElementEx( squareSide,
squareSide, squareSide/2, squareSide/2,
cv.CV_SHAPE_ELLIPSE),
'morpho2' : cv.CreateStructuringElementEx( int(squareSide/2),
int(squareSide/2), int(squareSide/4), int(squareSide/4),
cv.CV_SHAPE_ELLIPSE),
'avgColor': colorAvg,
'speed':0, 'acceleration':0, 'direction':0, 'changeDirection':0,
'lastPoint': { 'x':x, 'y':y },
}
droplets.append(newDroplet)
track_info.append([]) #add another list here to add the info about the droplet's movement
def find_connected_components(img):
"""Find the connected components in img being a binary image.
it approximates by rectangles and returns its centers
"""
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(img, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
centers = []
while contour:
# Approximates rectangles
bound_rect = cv.BoundingRect(list(contour))
centers.append( (bound_rect[0] + bound_rect[2] / 2,
bound_rect[1] + bound_rect[3] / 2) )
contour = contour.h_next()
return centers
if __name__ == "__main__":
# p = printcore.printcore("/dev/tty.usbserial-A4008eY6",115200)
# #p.loud=True
# sleep(3)
# gcode = [i.replace("\n","") for i in open( "/Users/joanmanel/Documents/thesis/gcode/first droplets/water_and_oil.gcode" )]
# p.startprint(gcode)
# sleep(3)
cv.NamedWindow('video', cv.CV_WINDOW_AUTOSIZE)
cv.NamedWindow('threshold', cv.CV_WINDOW_AUTOSIZE)
cv.NamedWindow('path', cv.CV_WINDOW_AUTOSIZE)
#cv.NamedWindow('particles', cv.CV_WINDOW_AUTOSIZE)
#cv.NamedWindow('som', cv.CV_WINDOW_AUTOSIZE)
capture = cv.CreateFileCapture('Videos/droplets.mov')
#capture = cv.CaptureFromCAM(1) # from webcam
frame = cv.QueryFrame(capture) # grab 1 frame to init everything
newvideo = 'Videos/%d_%d_%d_%d_%d_%d.avi' % (localtime()[0],localtime()[1],localtime()[2],localtime()[3],localtime()[4],localtime()[5])
video = cv.CreateVideoWriter(newvideo, cv.CV_FOURCC('D','I','V','X'), 30, cv.GetSize(frame), 1)
# prepare for undistortion
intrinsic = cv.Load("CamCalibration/Intrinsics.xml")
distortion = cv.Load("CamCalibration/Distortion.xml")
mapx = cv.CreateImage( cv.GetSize(frame), cv.IPL_DEPTH_32F, 1 );
mapy = cv.CreateImage( cv.GetSize(frame), cv.IPL_DEPTH_32F, 1 );
cv.InitUndistortMap(intrinsic,distortion,mapx,mapy)
t = cv.CloneImage(frame)
cv.Remap( t, frame, mapx, mapy ) # undistort
cv.Flip(frame, frame, 1) # flip around x because the webcam is like a mirror
#s1,s2 = cv.GetSize(frameOriginal)
#frame = cv.CreateImage( (s1/2,s2/2), frameOriginal.depth, frameOriginal.channels)
#cv.PyrDown(frameOriginal,frame) #half size because otherwise I cannot see everything in my 13 screen
# to store the results from the color seg
colorThreshed = cv.CreateImage(cv.GetSize(frame), 8, 1)
# to show the particles
#particlesImg = cv.CreateImage(cv.GetSize(frame), frame.depth, frame.channels)
#to show the path
pathImg = cv.CreateImage(cv.GetSize(frame), frame.depth, frame.channels)
cv.Set(pathImg, cv.ScalarAll(255))
key, pause = 1,1 # key is keyboard input, pause for playing/pause video
FPS = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
FPS = 30 # somehow the previous line returns 0 for cams. 30 is the default
frame_period = 1.0 / FPS
cv.SetMouseCallback('video', mouseHandler, frame)
droplets = [] # this will hold all the droplets found
frames = 0 # to count the number of frames
track_info = [] # a list to place position, speed, change of direction... of droplets over time
#num_particles = 50
#condensation = pf.Condensation(num_particles, 0, 0, frame.width, frame.height)
# # to display the som
# somImg = cv.CreateImage( (500, 500), 8, 3)
# # to display online results, display and clear every time to just show the last
# somImgCopy = cv.CreateImage( (500, 500), 8, 3)
# som = Som.load('Som/data/som.dat')
# sideSquare = 500/som.cellsSide
# for i in xrange(som.cellsSide):
# for j in xrange(som.cellsSide):
# print (som.nodes[i,j,0]*255, som.nodes[i,j,1]*255, 0)
# cv.Rectangle(somImg, (int(i*sideSquare), int(j*sideSquare)),
# (int(i*sideSquare+sideSquare), int(j*sideSquare+sideSquare)),
# (som.nodes[i,j,0]*255, som.nodes[i,j,1]*255, 0),
# cv.CV_FILLED)
while(1):
time_start = time()
if key == 97: # 97 is 'a'
if pause == 1:
pause = 0
else:
pause = 1
elif key == 27:
break
if pause == 1:
frame = cv.QueryFrame(capture) # grab 1 frame to init everything
if not frame: break
#t = cv.CloneImage(frame)
#cv.Remap( t, frame, mapx, mapy )
#cv.Flip(frame, frame, 1)
#cv.Copy(frame, particlesImg)
if len(droplets) > 0:
cv.WriteFrame(video, frame)
frames += 1
# we will do something every s if we checked frames == 0
if frames > FPS:
frames = 0
# we need to check that the number of targets being followed is known by the p filter
#while condensation.numTargets < len(droplets):
# condensation.addTarget()
foundDrops = 0
if frames == 0 and pause == 1 and len(droplets) > 0:
# blackout results from thresholding to fill in the next lines
cv.SetZero(colorThreshed)
for current in droplets:
# color segmentation
minRange = cv.Scalar( current['avgColor'][0]-8, current['avgColor'][1]-8,
current['avgColor'][2]-8 )
maxRange = cv.Scalar( current['avgColor'][0]+8, current['avgColor'][1]+8,
current['avgColor'][2]+8 )
colorThreshedTemp = cv.CreateImage( cv.GetSize(frame),8,1 )
cv.InRangeS(frame, minRange, maxRange, colorThreshedTemp)
#morpho operations to clean the results
cv.Dilate( colorThreshedTemp, colorThreshedTemp, current['morpho2'])
#cv.Erode( colorThreshedTemp, colorThreshedTemp, current['morpho2'])
cv.MorphologyEx( colorThreshedTemp, colorThreshedTemp, None,
current['morpho1'], cv.CV_MOP_CLOSE )
cv.Xor(colorThreshed, colorThreshedTemp, colorThreshed)
cv.MorphologyEx( colorThreshed, colorThreshed, None,
current['morpho1'], cv.CV_MOP_OPEN )
cv.ShowImage('threshold', colorThreshed)
centers = find_connected_components(colorThreshed)
foundDrops += len(centers)
del(colorThreshedTemp)
if foundDrops > 0 and foundDrops == len(droplets):
for i in xrange(len(droplets)):
mycenter = 0 # classic search of best one
nearer = 9999 #just a big number
for c in xrange(len(centers)):
dist = abs(np.linalg.norm( np.array(centers[c]) -
np.array( [droplets[i]['lastPoint']['x'],droplets[i]['lastPoint']['y']] ) ))
if dist < nearer:
mycenter = c
nearer = dist
# if the connected components found something we will update the avg color
# because the droplet probably moved somewhere else with diff light conditions
# this is the same as done in the mouse handler
frameCopy = cv.CreateImage(cv.GetSize(frame), frame.depth, frame.channels)
cv.Copy(frame, frameCopy)
fillResult = cv.FloodFill( frameCopy, (centers[mycenter][0],centers[mycenter][1]),
cv.RGB(250,0,0), cv.ScalarAll(2), cv.ScalarAll(2), 8 )
del(frameCopy)
# generate 2 struct element for morpho operations
# the size will be the min, to be safe
if fillResult[2][2] > fillResult[2][3]: # fillResult.rect.width > fillResult.rect.height
squareSide = fillResult[2][3]
else:
squareSide = fillResult[2][2]
# the masks need to be odd
if squareSide % 2 == 0: squareSide+=1
if squareSide < 2:
continue
# we capture the average color generated by the fill area
cv.SetImageROI( frame, (fillResult[2][0], fillResult[2][1],
squareSide, squareSide) )
colorAvg = cv.Avg(frame)
cv.ResetImageROI(frame)
# calculate the kinematics
direction = atan2( centers[mycenter][1] - droplets[i]['lastPoint']['y'],
centers[mycenter][0] - droplets[i]['lastPoint']['x'] )
distance = sqrt( (centers[mycenter][0] - droplets[i]['lastPoint']['x'])**2 +
(centers[mycenter][1] - droplets[i]['lastPoint']['y'])**2 )
speed = distance / 1
cv.Line( pathImg, (droplets[i]['lastPoint']['x'], droplets[i]['lastPoint']['y']),
(centers[mycenter][0],centers[mycenter][1]), droplets[i]['avgColor'] );
droplets[i]['acceleration'] = speed - droplets[i]['speed']
droplets[i]['changeDirection'] = direction - droplets[i]['direction']
droplets[i]['speed'] = speed
droplets[i]['direction'] = direction
droplets[i]['lastPoint']['x'] = centers[mycenter][0]
droplets[i]['lastPoint']['y'] = centers[mycenter][1]
track_info[i].append([ droplets[i]['lastPoint']['x'],droplets[i]['lastPoint']['y'],speed, droplets[i]['changeDirection']])
# # find best node in the SOM for this pair speed / change dir
# pos = som.FindBestMatchingNode([ float(speed) / som.dimMaxs[0], float(droplets[i]['changeDirection'])/som.dimMaxs[1]])
# sSq = 500 / som.cellsSide
# cv.Copy(somImg, somImgCopy)
# cv.Rectangle(somImgCopy, (int(pos[0]*sSq), int(pos[1]*sSq)),
# (int(pos[0]*sSq+sSq), int(pos[1]*sSq+sSq)), (0, 0, 255), cv.CV_FILLED)
# update the morpho elements and the avg color
droplets[i]['morpho1'] = cv.CreateStructuringElementEx( squareSide,
squareSide, squareSide/2, squareSide/2,
cv.CV_SHAPE_ELLIPSE)
droplets[i]['morpho2'] = cv.CreateStructuringElementEx( int(squareSide/2),
int(squareSide/2), int(squareSide/4), int(squareSide/4),
cv.CV_SHAPE_ELLIPSE)
droplets[i]['avgColor'] = colorAvg
cv.ShowImage('video', frame)
cv.ShowImage('path',pathImg)
#cv.ShowImage('som', somImgCopy)
# if foundDrops == len(droplets) and len(droplets) > 0:
# condensation.propagate(droplets)
# condensation.updateWeights(droplets)
# condensation.estimateState()
# condensation.reSampling()
# if len(droplets) > 0:
# for col in condensation.particles:
# for particle in col:
# cv.Circle(particlesImg, (int(particle.x), int(particle.y)), 2,
# droplets[particle.myTarget]['avgColor'], cv.CV_FILLED)
# for est in condensation.estimation:
# cv.Circle(particlesImg, (int(est['x']), int(est['y'])), 5, cv.Scalar(0,0,255), cv.CV_FILLED)
# cv.ShowImage('particles', particlesImg)
time_end = time()
cycle_time = time_end - time_start
if frames == 0:
print cycle_time
delay = frame_period - cycle_time
if delay < 0: delay = 0
if delay > frame_period: delay = frame_period
key = cv.WaitKey( int(delay*1000)+1 )
#L = prepare_track_data(track_info[0])
newfile = 'Som/data/%d_%d_%d_%d_%d_%d.txt' % (localtime()[0],localtime()[1],localtime()[2],localtime()[3],localtime()[4],localtime()[5])
f = open(newfile, 'w')
pickle.dump(track_info[0] ,f)
f.close()
del(capture)
del(frame)
del(colorThreshed)
del(pathImg)
#del(particlesImg)
del(video)
#del(somImg)
#del(somImgCopy)
cv.DestroyWindow('video')
#cv.DestroyWindow('particles')
cv.DestroyWindow('path')
cv.DestroyWindow('threshold')
cv.DestroyWindow('som')