-
Notifications
You must be signed in to change notification settings - Fork 0
/
Diabetes Predictor - Deployment.py
36 lines (29 loc) · 1.44 KB
/
Diabetes Predictor - Deployment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Importing essential libraries
import numpy as np
import pandas as pd
import pickle
# Loading the dataset
df = pd.read_csv('kaggle_diabetes.csv')
# Renaming DiabetesPedigreeFunction as DPF
df = df.rename(columns={'DiabetesPedigreeFunction':'DPF'})
# Replacing the 0 values from ['Glucose','BloodPressure','SkinThickness','Insulin','BMI'] by NaN
df_copy = df.copy(deep=True)
df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']].replace(0,np.NaN)
# Replacing NaN value by mean, median depending upon distribution
df_copy['Glucose'].fillna(df_copy['Glucose'].mean(), inplace=True)
df_copy['BloodPressure'].fillna(df_copy['BloodPressure'].mean(), inplace=True)
df_copy['SkinThickness'].fillna(df_copy['SkinThickness'].median(), inplace=True)
df_copy['Insulin'].fillna(df_copy['Insulin'].median(), inplace=True)
df_copy['BMI'].fillna(df_copy['BMI'].median(), inplace=True)
# Model Building
from sklearn.model_selection import train_test_split
X = df.drop(columns='Outcome')
y = df['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0)
# Creating Random Forest Model
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=20)
classifier.fit(X_train, y_train)
# Creating a pickle file for the classifier
filename = 'diabetes-prediction-rfc-model.pkl'
pickle.dump(classifier, open(filename, 'wb'))