diff --git a/R/detect_duplicate_genomes.R b/R/detect_duplicate_genomes.R index ebae3b1f..244714aa 100644 --- a/R/detect_duplicate_genomes.R +++ b/R/detect_duplicate_genomes.R @@ -849,13 +849,19 @@ detect_duplicate_genomes <- function( # message("Use the distance or genome analysis to blacklist duplicates ? (distance/genome): ") # analysis <- as.character(readLines(n = 1)) - if (data.type != "SeqVarGDSClass") { + if (data.type == "SeqVarGDSClass") { analysis <- "distance" } else { - analysis <- radiator_question( - x = "\nChoose the analysis method to blacklist duplicates? (distance/genome): ", - answer.opt = c("distance", "genome") - ) + if (!is.null(distance.method) && genome) { + analysis <- radiator_question( + x = "\nChoose the analysis method to blacklist duplicates? (distance/genome): ", + answer.opt = c("distance", "genome") + ) + } else if (genome) { + analysis <- "genome" + } else { + analysis <- "distance" + } } if (analysis == "distance") { diff --git a/R/visualization.R b/R/visualization.R index a835a9c4..1e0eac5d 100644 --- a/R/visualization.R +++ b/R/visualization.R @@ -369,7 +369,11 @@ boxplot_stats <- function( plot = fig.boxplot, width = width, height = height, - dpi = 300, units = "cm", useDingbats = FALSE)) + dpi = 300, units = "cm", + limitsize = FALSE, + useDingbats = FALSE + ) + ) } return(fig.boxplot) }#Endboxplot_stats @@ -504,7 +508,7 @@ plot_coverage_imbalance_diagnostic <- function(tidy.vcf.file, pop.levels, read.d } else { data <- suppressWarnings( data %>% - dplyr::mutate(POP_ID = factor(POP_ID, levels = pop.levels, ordered = T)) + dplyr::mutate(POP_ID = factor(POP_ID, levels = pop.levels, ordered = T)) ) } @@ -579,7 +583,7 @@ plot_density_distribution_maf <- function(data, maf.group, aes.colour = ggplot2: ggplot2::geom_line(aes.colour, stat = "density", adjust = adjust.bin) + # pop colored # scale_colour_manual(name ="Sampling sites", values = colour_palette_sites.pink) + ggplot2::scale_x_continuous(breaks = c(0, 0.05, 0.1, 0.2, 0.5, 1), - labels = c("0", "0.05", "0.1", "0.2", "0.5", "1.0")) + + labels = c("0", "0.05", "0.1", "0.2", "0.5", "1.0")) + ggplot2::labs(x = x.title) + ggplot2::labs(y = "Density of SNP (scaled)") + ggplot2::expand_limits(y = 0) + @@ -714,10 +718,10 @@ plot_snp_number_loci <- function(before.filter.data, after.filter.data) { ggplot2::labs(y = "Distribution (number)") + ggplot2::facet_wrap(~GROUP, nrow = 1, ncol = 2) + ggplot2::theme(axis.title.x = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), - axis.title.y = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), - legend.title = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), - legend.text = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), - strip.text.x = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold")) + axis.title.y = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), + legend.title = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), + legend.text = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold"), + strip.text.x = ggplot2::element_text(size = 12, family = "Helvetica", face = "bold")) graph }