Skip to content

Commit 6fe260e

Browse files
committed
Remove warning keamns
1 parent 7f584a0 commit 6fe260e

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

metacluster/utils/cluster.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ def get_clusters_by_elbow(X, list_clusters=None, **kwargs):
3434
list_clusters = DEFAULT_LIST_CLUSTERS
3535
wcss = []
3636
for n_c in list_clusters:
37-
kmeans = KMeans(n_clusters=n_c)
37+
kmeans = KMeans(n_clusters=n_c, n_init="auto")
3838
kmeans.fit(X=X)
3939
wcss.append(kmeans.inertia_)
4040
x1, y1 = 2, wcss[0]
@@ -158,7 +158,7 @@ def get_clusters_by_silhouette_score(X, list_clusters=None, **kwargs):
158158
sil_max = 0
159159
sil_max_clusters = 2
160160
for n_clusters in list_clusters:
161-
model = KMeans(n_clusters=n_clusters)
161+
model = KMeans(n_clusters=n_clusters, n_init="auto")
162162
labels = model.fit_predict(X)
163163
sil_score = metrics.silhouette_score(X, labels)
164164
if sil_score > sil_max:
@@ -176,7 +176,7 @@ def get_clusters_by_davies_bouldin(X, list_clusters=None, **kwargs):
176176
list_clusters = DEFAULT_LIST_CLUSTERS
177177
list_dbs = []
178178
for n_clusters in list_clusters:
179-
model = KMeans(n_clusters=n_clusters)
179+
model = KMeans(n_clusters=n_clusters, n_init="auto")
180180
labels = model.fit_predict(X)
181181
db_score = metrics.davies_bouldin_score(X, labels)
182182
list_dbs.append(db_score)
@@ -192,7 +192,7 @@ def get_clusters_by_calinski_harabasz(X, list_clusters=None, **kwargs):
192192
list_clusters = DEFAULT_LIST_CLUSTERS
193193
list_chs = []
194194
for n_clusters in list_clusters:
195-
model = KMeans(n_clusters=n_clusters)
195+
model = KMeans(n_clusters=n_clusters, n_init="auto")
196196
labels = model.fit_predict(X)
197197
ch_score = metrics.calinski_harabasz_score(X, labels)
198198
list_chs.append(ch_score)

0 commit comments

Comments
 (0)