From 32296385baa94a3d7a03ca42f7c603067fab327c Mon Sep 17 00:00:00 2001 From: Godot115 Date: Mon, 15 Apr 2024 05:38:51 +0800 Subject: [PATCH] fix bugs: Update examples and docs for breaking changes in v3.0.0 - Change ClassName to NewClassName (mostly are BaseXXX to DevXXX) in docs/source/pages/general/advances/import_all_models.rst and examples/run_all_parameters.py - Rename fit_func to obj_func in examples/applications/pytorch/linear_regression.py. Bug in issue 147 is fixed https://github.com/thieu1995/mealpy/issues/147. --- .../general/advances/import_all_models.rst | 1738 ++++++++--------- .../applications/pytorch/linear_regression.py | 2 +- examples/run_all_parameters.py | 64 +- 3 files changed, 902 insertions(+), 902 deletions(-) diff --git a/docs/source/pages/general/advances/import_all_models.rst b/docs/source/pages/general/advances/import_all_models.rst index f189ebc2..8e61fd85 100644 --- a/docs/source/pages/general/advances/import_all_models.rst +++ b/docs/source/pages/general/advances/import_all_models.rst @@ -3,894 +3,894 @@ Import All Models .. code-block:: python - from mealpy import BBO, PSO, GA, ALO, AO, ARO, AVOA, BA, BBOA, BMO, EOA, IWO - from mealpy import SBO, SMA, SOA, SOS, TPO, TSA, VCS, WHO, AOA, CEM, CGO, CircleSA, GBO, HC, INFO, PSS, RUN, SCA - from mealpy import SHIO, TS, HS, AEO, GCO, WCA, CRO, DE, EP, ES, FPA, MA, SHADE, BRO, BSO, CA, CHIO, FBIO, GSKA, HBO - from mealpy import HCO, ICA, LCO, WarSO, TOA, TLO, SSDO, SPBO, SARO, QSA, ArchOA, ASO, CDO, EFO, EO, EVO, FLA - from mealpy import HGSO, MVO, NRO, RIME, SA, WDO, TWO, ABC, ACOR, AGTO, BeesA, BES, BFO, ZOA, WOA, WaOA, TSO - from mealpy import TDO, STO, SSpiderO, SSpiderA, SSO, SSA, SRSR, SLO, SHO, SFO, ServalOA, SeaHO, SCSO, POA - from mealpy import PFA, OOA, NGO, NMRA, MSA, MRFO, MPA, MGO, MFO, JA, HHO, HGS, HBA, GWO, GTO, GOA - from mealpy import GJO, FOX, FOA, FFO, FFA, FA, ESOA, EHO, DO, DMOA, CSO, CSA, CoatiOA, COA, BSA - from mealpy import StringVar, FloatVar, BoolVar, PermutationVar, MixedSetVar, IntegerVar, BinaryVar - from mealpy import Tuner, Multitask, Problem, Optimizer, Termination, ParameterGrid - from mealpy import get_all_optimizers, get_optimizer_by_name - import numpy as np + from mealpy import BBO, PSO, GA, ALO, AO, ARO, AVOA, BA, BBOA, BMO, EOA, IWO + from mealpy import SBO, SMA, SOA, SOS, TPO, TSA, VCS, WHO, AOA, CEM, CGO, CircleSA, GBO, HC, INFO, PSS, RUN, SCA + from mealpy import SHIO, TS, HS, AEO, GCO, WCA, CRO, DE, EP, ES, FPA, MA, SHADE, BRO, BSO, CA, CHIO, FBIO, GSKA, HBO + from mealpy import HCO, ICA, LCO, WarSO, TOA, TLO, SSDO, SPBO, SARO, QSA, ArchOA, ASO, CDO, EFO, EO, EVO, FLA + from mealpy import HGSO, MVO, NRO, RIME, SA, WDO, TWO, ABC, ACOR, AGTO, BeesA, BES, BFO, ZOA, WOA, WaOA, TSO + from mealpy import TDO, STO, SSpiderO, SSpiderA, SSO, SSA, SRSR, SLO, SHO, SFO, ServalOA, SeaHO, SCSO, POA + from mealpy import PFA, OOA, NGO, NMRA, MSA, MRFO, MPA, MGO, MFO, JA, HHO, HGS, HBA, GWO, GTO, GOA + from mealpy import GJO, FOX, FOA, FFO, FFA, FA, ESOA, EHO, DO, DMOA, CSO, CSA, CoatiOA, COA, BSA + from mealpy import StringVar, FloatVar, BoolVar, PermutationVar, MixedSetVar, IntegerVar, BinaryVar + from mealpy import Tuner, Multitask, Problem, Optimizer, Termination, ParameterGrid + from mealpy import get_all_optimizers, get_optimizer_by_name + import numpy as np - def objective_function(solution): - return np.sum(solution ** 2) + def objective_function(solution): + return np.sum(solution ** 2) - problem = { - "obj_func": objective_function, - "bounds": FloatVar(lb=[-3] * 20, ub=[5] * 20), - "name": "Squared Problem", - "log_to": "file", - "log_file": "results.log" - } + problem = { + "obj_func": objective_function, + "bounds": FloatVar(lb=[-3] * 20, ub=[5] * 20), + "name": "Squared Problem", + "log_to": "file", + "log_file": "results.log" + } - paras_bbo = { - "epoch": 20, - "pop_size": 50, - "p_m": 0.01, - "elites": 2, - } - paras_eoa = { - "epoch": 20, - "pop_size": 50, - "p_c": 0.9, - "p_m": 0.01, - "n_best": 2, - "alpha": 0.98, - "beta": 0.9, - "gamma": 0.9, - } - paras_iwo = { - "epoch": 20, - "pop_size": 50, - "seed_min": 3, - "seed_max": 9, - "exponent": 3, - "sigma_start": 0.6, - "sigma_end": 0.01, - } - paras_sbo = { - "epoch": 20, - "pop_size": 50, - "alpha": 0.9, - "p_m": 0.05, - "psw": 0.02, - } - paras_sma = { - "epoch": 20, - "pop_size": 50, - "p_t": 0.03, - } - paras_vcs = { - "epoch": 20, - "pop_size": 50, - "lamda": 0.5, - "sigma": 0.3, - } - paras_who = { - "epoch": 20, - "pop_size": 50, - "n_explore_step": 3, - "n_exploit_step": 3, - "eta": 0.15, - "p_hi": 0.9, - "local_alpha": 0.9, - "local_beta": 0.3, - "global_alpha": 0.2, - "global_beta": 0.8, - "delta_w": 2.0, - "delta_c": 2.0, - } - paras_cro = { - "epoch": 20, - "pop_size": 50, - "po": 0.4, - "Fb": 0.9, - "Fa": 0.1, - "Fd": 0.1, - "Pd": 0.5, - "GCR": 0.1, - "gamma_min": 0.02, - "gamma_max": 0.2, - "n_trials": 5, - } - paras_ocro = dict(paras_cro) - paras_ocro["restart_count"] = 5 + paras_bbo = { + "epoch": 20, + "pop_size": 50, + "p_m": 0.01, + "elites": 2, + } + paras_eoa = { + "epoch": 20, + "pop_size": 50, + "p_c": 0.9, + "p_m": 0.01, + "n_best": 2, + "alpha": 0.98, + "beta": 0.9, + "gamma": 0.9, + } + paras_iwo = { + "epoch": 20, + "pop_size": 50, + "seed_min": 3, + "seed_max": 9, + "exponent": 3, + "sigma_start": 0.6, + "sigma_end": 0.01, + } + paras_sbo = { + "epoch": 20, + "pop_size": 50, + "alpha": 0.9, + "p_m": 0.05, + "psw": 0.02, + } + paras_sma = { + "epoch": 20, + "pop_size": 50, + "p_t": 0.03, + } + paras_vcs = { + "epoch": 20, + "pop_size": 50, + "lamda": 0.5, + "sigma": 0.3, + } + paras_who = { + "epoch": 20, + "pop_size": 50, + "n_explore_step": 3, + "n_exploit_step": 3, + "eta": 0.15, + "p_hi": 0.9, + "local_alpha": 0.9, + "local_beta": 0.3, + "global_alpha": 0.2, + "global_beta": 0.8, + "delta_w": 2.0, + "delta_c": 2.0, + } + paras_cro = { + "epoch": 20, + "pop_size": 50, + "po": 0.4, + "Fb": 0.9, + "Fa": 0.1, + "Fd": 0.1, + "Pd": 0.5, + "GCR": 0.1, + "gamma_min": 0.02, + "gamma_max": 0.2, + "n_trials": 5, + } + paras_ocro = dict(paras_cro) + paras_ocro["restart_count"] = 5 - paras_de = { - "epoch": 20, - "pop_size": 50, - "wf": 0.7, - "cr": 0.9, - "strategy": 0, - } - paras_jade = { - "epoch": 20, - "pop_size": 50, - "miu_f": 0.5, - "miu_cr": 0.5, - "pt": 0.1, - "ap": 0.1, - } - paras_sade = { - "epoch": 20, - "pop_size": 50, - } - paras_shade = paras_lshade = { - "epoch": 20, - "pop_size": 50, - "miu_f": 0.5, - "miu_cr": 0.5, - } - paras_sap_de = { - "epoch": 20, - "pop_size": 50, - "branch": "ABS" - } - paras_ep = paras_levy_ep = { - "epoch": 20, - "pop_size": 50, - "bout_size": 0.05 - } - paras_es = paras_levy_es = { - "epoch": 20, - "pop_size": 50, - "lamda": 0.75 - } - paras_fpa = { - "epoch": 20, - "pop_size": 50, - "p_s": 0.8, - "levy_multiplier": 0.2 - } - paras_ga = { - "epoch": 20, - "pop_size": 50, - "pc": 0.9, - "pm": 0.05, - } - paras_single_ga = { - "epoch": 20, - "pop_size": 50, - "pc": 0.9, - "pm": 0.8, - "selection": "roulette", - "crossover": "uniform", - "mutation": "swap", - } - paras_multi_ga = { - "epoch": 20, - "pop_size": 50, - "pc": 0.9, - "pm": 0.05, - "selection": "roulette", - "crossover": "uniform", - "mutation": "swap", - } - paras_ma = { - "epoch": 20, - "pop_size": 50, - "pc": 0.85, - "pm": 0.15, - "p_local": 0.5, - "max_local_gens": 10, - "bits_per_param": 4, - } + paras_de = { + "epoch": 20, + "pop_size": 50, + "wf": 0.7, + "cr": 0.9, + "strategy": 0, + } + paras_jade = { + "epoch": 20, + "pop_size": 50, + "miu_f": 0.5, + "miu_cr": 0.5, + "pt": 0.1, + "ap": 0.1, + } + paras_sade = { + "epoch": 20, + "pop_size": 50, + } + paras_shade = paras_lshade = { + "epoch": 20, + "pop_size": 50, + "miu_f": 0.5, + "miu_cr": 0.5, + } + paras_sap_de = { + "epoch": 20, + "pop_size": 50, + "branch": "ABS" + } + paras_ep = paras_levy_ep = { + "epoch": 20, + "pop_size": 50, + "bout_size": 0.05 + } + paras_es = paras_levy_es = { + "epoch": 20, + "pop_size": 50, + "lamda": 0.75 + } + paras_fpa = { + "epoch": 20, + "pop_size": 50, + "p_s": 0.8, + "levy_multiplier": 0.2 + } + paras_ga = { + "epoch": 20, + "pop_size": 50, + "pc": 0.9, + "pm": 0.05, + } + paras_single_ga = { + "epoch": 20, + "pop_size": 50, + "pc": 0.9, + "pm": 0.8, + "selection": "roulette", + "crossover": "uniform", + "mutation": "swap", + } + paras_multi_ga = { + "epoch": 20, + "pop_size": 50, + "pc": 0.9, + "pm": 0.05, + "selection": "roulette", + "crossover": "uniform", + "mutation": "swap", + } + paras_ma = { + "epoch": 20, + "pop_size": 50, + "pc": 0.85, + "pm": 0.15, + "p_local": 0.5, + "max_local_gens": 10, + "bits_per_param": 4, + } - paras_bro = { - "epoch": 20, - "pop_size": 50, - "threshold": 3, - } - paras_improved_bso = { - "epoch": 20, - "pop_size": 50, - "m_clusters": 5, - "p1": 0.2, - "p2": 0.8, - "p3": 0.4, - "p4": 0.5, - } - paras_bso = dict(paras_improved_bso) - paras_bso["slope"] = 20 - paras_ca = { - "epoch": 20, - "pop_size": 50, - "accepted_rate": 0.15, - } - paras_chio = { - "epoch": 20, - "pop_size": 50, - "brr": 0.15, - "max_age": 3 - } - paras_fbio = { - "epoch": 20, - "pop_size": 50, - } - paras_base_gska = { - "epoch": 20, - "pop_size": 50, - "pb": 0.1, - "kr": 0.9, - } - paras_gska = { - "epoch": 20, - "pop_size": 50, - "pb": 0.1, - "kf": 0.5, - "kr": 0.9, - "kg": 5, - } - paras_ica = { - "epoch": 20, - "pop_size": 50, - "empire_count": 5, - "assimilation_coeff": 1.5, - "revolution_prob": 0.05, - "revolution_rate": 0.1, - "revolution_step_size": 0.1, - "zeta": 0.1, - } - paras_lco = { - "epoch": 20, - "pop_size": 50, - "r1": 2.35, - } - paras_improved_lco = { - "epoch": 20, - "pop_size": 50, - } - paras_qsa = { - "epoch": 20, - "pop_size": 50, - } - paras_saro = { - "epoch": 20, - "pop_size": 50, - "se": 0.5, - "mu": 15 - } - paras_ssdo = { - "epoch": 20, - "pop_size": 50, - } - paras_tlo = { - "epoch": 20, - "pop_size": 50, - } - paras_improved_tlo = { - "epoch": 20, - "pop_size": 50, - "n_teachers": 5, - } + paras_bro = { + "epoch": 20, + "pop_size": 50, + "threshold": 3, + } + paras_improved_bso = { + "epoch": 20, + "pop_size": 50, + "m_clusters": 5, + "p1": 0.2, + "p2": 0.8, + "p3": 0.4, + "p4": 0.5, + } + paras_bso = dict(paras_improved_bso) + paras_bso["slope"] = 20 + paras_ca = { + "epoch": 20, + "pop_size": 50, + "accepted_rate": 0.15, + } + paras_chio = { + "epoch": 20, + "pop_size": 50, + "brr": 0.15, + "max_age": 3 + } + paras_fbio = { + "epoch": 20, + "pop_size": 50, + } + paras_base_gska = { + "epoch": 20, + "pop_size": 50, + "pb": 0.1, + "kr": 0.9, + } + paras_gska = { + "epoch": 20, + "pop_size": 50, + "pb": 0.1, + "kf": 0.5, + "kr": 0.9, + "kg": 5, + } + paras_ica = { + "epoch": 20, + "pop_size": 50, + "empire_count": 5, + "assimilation_coeff": 1.5, + "revolution_prob": 0.05, + "revolution_rate": 0.1, + "revolution_step_size": 0.1, + "zeta": 0.1, + } + paras_lco = { + "epoch": 20, + "pop_size": 50, + "r1": 2.35, + } + paras_improved_lco = { + "epoch": 20, + "pop_size": 50, + } + paras_qsa = { + "epoch": 20, + "pop_size": 50, + } + paras_saro = { + "epoch": 20, + "pop_size": 50, + "se": 0.5, + "mu": 15 + } + paras_ssdo = { + "epoch": 20, + "pop_size": 50, + } + paras_tlo = { + "epoch": 20, + "pop_size": 50, + } + paras_improved_tlo = { + "epoch": 20, + "pop_size": 50, + "n_teachers": 5, + } - paras_aoa = { - "epoch": 20, - "pop_size": 50, - "alpha": 5, - "miu": 0.5, - "moa_min": 0.2, - "moa_max": 0.9, - } - paras_cem = { - "epoch": 20, - "pop_size": 50, - "n_best": 20, - "alpha": 0.7, - } - paras_cgo = { - "epoch": 20, - "pop_size": 50, - } - paras_gbo = { - "epoch": 20, - "pop_size": 50, - "pr": 0.5, - "beta_min": 0.2, - "beta_max": 1.2, - } - paras_hc = { - "epoch": 20, - "pop_size": 50, - "neighbour_size": 50 - } - paras_swarm_hc = { - "epoch": 20, - "pop_size": 50, - "neighbour_size": 10 - } - paras_pss = { - "epoch": 20, - "pop_size": 50, - "acceptance_rate": 0.8, - "sampling_method": "LHS", - } - paras_sca = { - "epoch": 20, - "pop_size": 50, - } + paras_aoa = { + "epoch": 20, + "pop_size": 50, + "alpha": 5, + "miu": 0.5, + "moa_min": 0.2, + "moa_max": 0.9, + } + paras_cem = { + "epoch": 20, + "pop_size": 50, + "n_best": 20, + "alpha": 0.7, + } + paras_cgo = { + "epoch": 20, + "pop_size": 50, + } + paras_gbo = { + "epoch": 20, + "pop_size": 50, + "pr": 0.5, + "beta_min": 0.2, + "beta_max": 1.2, + } + paras_hc = { + "epoch": 20, + "pop_size": 50, + "neighbour_size": 50 + } + paras_swarm_hc = { + "epoch": 20, + "pop_size": 50, + "neighbour_size": 10 + } + paras_pss = { + "epoch": 20, + "pop_size": 50, + "acceptance_rate": 0.8, + "sampling_method": "LHS", + } + paras_sca = { + "epoch": 20, + "pop_size": 50, + } - paras_hs = { - "epoch": 20, - "pop_size": 50, - "c_r": 0.95, - "pa_r": 0.05 - } + paras_hs = { + "epoch": 20, + "pop_size": 50, + "c_r": 0.95, + "pa_r": 0.05 + } - paras_aeo = { - "epoch": 20, - "pop_size": 50, - } - paras_gco = { - "epoch": 20, - "pop_size": 50, - "cr": 0.7, - "wf": 1.25, - } - paras_wca = { - "epoch": 20, - "pop_size": 50, - "nsr": 4, - "wc": 2.0, - "dmax": 1e-6 - } + paras_aeo = { + "epoch": 20, + "pop_size": 50, + } + paras_gco = { + "epoch": 20, + "pop_size": 50, + "cr": 0.7, + "wf": 1.25, + } + paras_wca = { + "epoch": 20, + "pop_size": 50, + "nsr": 4, + "wc": 2.0, + "dmax": 1e-6 + } - paras_archoa = { - "epoch": 20, - "pop_size": 50, - "c1": 2, - "c2": 5, - "c3": 2, - "c4": 0.5, - "acc_max": 0.9, - "acc_min": 0.1, - } - paras_aso = { - "epoch": 20, - "pop_size": 50, - "alpha": 50, - "beta": 0.2, - } - paras_efo = { - "epoch": 20, - "pop_size": 50, - "r_rate": 0.3, - "ps_rate": 0.85, - "p_field": 0.1, - "n_field": 0.45, - } - paras_eo = { - "epoch": 20, - "pop_size": 50, - } - paras_hgso = { - "epoch": 20, - "pop_size": 50, - "n_clusters": 3, - } - paras_mvo = { - "epoch": 20, - "pop_size": 50, - "wep_min": 0.2, - "wep_max": 1.0, - } - paras_nro = { - "epoch": 20, - "pop_size": 50, - } - paras_sa = { - "epoch": 20, - "pop_size": 50, - "max_sub_iter": 5, - "t0": 1000, - "t1": 1, - "move_count": 5, - "mutation_rate": 0.1, - "mutation_step_size": 0.1, - "mutation_step_size_damp": 0.99, - } - paras_two = { - "epoch": 20, - "pop_size": 50, - } - paras_wdo = { - "epoch": 20, - "pop_size": 50, - "RT": 3, - "g_c": 0.2, - "alp": 0.4, - "c_e": 0.4, - "max_v": 0.3, - } + paras_archoa = { + "epoch": 20, + "pop_size": 50, + "c1": 2, + "c2": 5, + "c3": 2, + "c4": 0.5, + "acc_max": 0.9, + "acc_min": 0.1, + } + paras_aso = { + "epoch": 20, + "pop_size": 50, + "alpha": 50, + "beta": 0.2, + } + paras_efo = { + "epoch": 20, + "pop_size": 50, + "r_rate": 0.3, + "ps_rate": 0.85, + "p_field": 0.1, + "n_field": 0.45, + } + paras_eo = { + "epoch": 20, + "pop_size": 50, + } + paras_hgso = { + "epoch": 20, + "pop_size": 50, + "n_clusters": 3, + } + paras_mvo = { + "epoch": 20, + "pop_size": 50, + "wep_min": 0.2, + "wep_max": 1.0, + } + paras_nro = { + "epoch": 20, + "pop_size": 50, + } + paras_sa = { + "epoch": 20, + "pop_size": 50, + "max_sub_iter": 5, + "t0": 1000, + "t1": 1, + "move_count": 5, + "mutation_rate": 0.1, + "mutation_step_size": 0.1, + "mutation_step_size_damp": 0.99, + } + paras_two = { + "epoch": 20, + "pop_size": 50, + } + paras_wdo = { + "epoch": 20, + "pop_size": 50, + "RT": 3, + "g_c": 0.2, + "alp": 0.4, + "c_e": 0.4, + "max_v": 0.3, + } - paras_abc = { - "epoch": 20, - "pop_size": 50, - "n_elites": 16, - "n_others": 4, - "patch_size": 5.0, - "patch_reduction": 0.985, - "n_sites": 3, - "n_elite_sites": 1, - } - paras_acor = { - "epoch": 20, - "pop_size": 50, - "sample_count": 25, - "intent_factor": 0.5, - "zeta": 1.0, - } - paras_alo = { - "epoch": 20, - "pop_size": 50, - } - paras_ao = { - "epoch": 20, - "pop_size": 50, - } - paras_ba = { - "epoch": 20, - "pop_size": 50, - "loudness": 0.8, - "pulse_rate": 0.95, - "pf_min": 0., - "pf_max": 10., - } - paras_adaptive_ba = { - "epoch": 20, - "pop_size": 50, - "loudness_min": 1.0, - "loudness_max": 2.0, - "pr_min": 0.15, - "pr_max": 0.85, - "pf_min": 0., - "pf_max": 10., - } - paras_modified_ba = { - "epoch": 20, - "pop_size": 50, - "pulse_rate": 0.95, - "pf_min": 0., - "pf_max": 10., - } - paras_beesa = { - "epoch": 20, - "pop_size": 50, - "selected_site_ratio": 0.5, - "elite_site_ratio": 0.4, - "selected_site_bee_ratio": 0.1, - "elite_site_bee_ratio": 2.0, - "dance_radius": 0.1, - "dance_reduction": 0.99, - } - paras_prob_beesa = { - "epoch": 20, - "pop_size": 50, - "recruited_bee_ratio": 0.1, - "dance_radius": 0.1, - "dance_reduction": 0.99, - } - paras_bes = { - "epoch": 20, - "pop_size": 50, - "a_factor": 10, - "R_factor": 1.5, - "alpha": 2.0, - "c1": 2.0, - "c2": 2.0, - } - paras_bfo = { - "epoch": 20, - "pop_size": 50, - "Ci": 0.01, - "Ped": 0.25, - "Nc": 5, - "Ns": 4, - "d_attract": 0.1, - "w_attract": 0.2, - "h_repels": 0.1, - "w_repels": 10, - } - paras_abfo = { - "epoch": 20, - "pop_size": 50, - "C_s": 0.1, - "C_e": 0.001, - "Ped": 0.01, - "Ns": 4, - "N_adapt": 4, - "N_split": 40, - } - paras_bsa = { - "epoch": 20, - "pop_size": 50, - "ff": 10, - "pff": 0.8, - "c1": 1.5, - "c2": 1.5, - "a1": 1.0, - "a2": 1.0, - "fl": 0.5, - } - paras_coa = { - "epoch": 20, - "pop_size": 50, - "n_coyotes": 5, - } - paras_csa = { - "epoch": 20, - "pop_size": 50, - "p_a": 0.3, - } - paras_cso = { - "epoch": 20, - "pop_size": 50, - "mixture_ratio": 0.15, - "smp": 5, - "spc": False, - "cdc": 0.8, - "srd": 0.15, - "c1": 0.4, - "w_min": 0.4, - "w_max": 0.9, - "selected_strategy": 1, - } - paras_do = { - "epoch": 20, - "pop_size": 50, - } - paras_eho = { - "epoch": 20, - "pop_size": 50, - "alpha": 0.5, - "beta": 0.5, - "n_clans": 5, - } - paras_fa = { - "epoch": 20, - "pop_size": 50, - "max_sparks": 20, - "p_a": 0.04, - "p_b": 0.8, - "max_ea": 40, - "m_sparks": 5, - } - paras_ffa = { - "epoch": 20, - "pop_size": 50, - "gamma": 0.001, - "beta_base": 2, - "alpha": 0.2, - "alpha_damp": 0.99, - "delta": 0.05, - "exponent": 2, - } - paras_foa = { - "epoch": 20, - "pop_size": 50, - } - paras_goa = { - "epoch": 20, - "pop_size": 50, - "c_min": 0.00004, - "c_max": 1.0, - } - paras_gwo = { - "epoch": 20, - "pop_size": 50, - } - paras_hgs = { - "epoch": 20, - "pop_size": 50, - "PUP": 0.08, - "LH": 10000, - } - paras_hho = { - "epoch": 20, - "pop_size": 50, - } - paras_ja = { - "epoch": 20, - "pop_size": 50, - } - paras_mfo = { - "epoch": 20, - "pop_size": 50, - } - paras_mrfo = { - "epoch": 20, - "pop_size": 50, - "somersault_range": 2.0, - } - paras_msa = { - "epoch": 20, - "pop_size": 50, - "n_best": 5, - "partition": 0.5, - "max_step_size": 1.0, - } - paras_nmra = { - "epoch": 20, - "pop_size": 50, - "pb": 0.75, - } - paras_improved_nmra = { - "epoch": 20, - "pop_size": 50, - "pb": 0.75, - "pm": 0.01, - } - paras_pfa = { - "epoch": 20, - "pop_size": 50, - } - paras_pso = { - "epoch": 20, - "pop_size": 50, - "c1": 2.05, - "c2": 2.05, - "w_min": 0.4, - "w_max": 0.9, - } - paras_ppso = { - "epoch": 20, - "pop_size": 50, - } - paras_hpso_tvac = { - "epoch": 20, - "pop_size": 50, - "ci": 0.5, - "cf": 0.0, - } - paras_cpso = { - "epoch": 20, - "pop_size": 50, - "c1": 2.05, - "c2": 2.05, - "w_min": 0.4, - "w_max": 0.9, - } - paras_clpso = { - "epoch": 20, - "pop_size": 50, - "c_local": 1.2, - "w_min": 0.4, - "w_max": 0.9, - "max_flag": 7, - } - paras_sfo = { - "epoch": 20, - "pop_size": 50, - "pp": 0.1, - "AP": 4.0, - "epsilon": 0.0001, - } - paras_improved_sfo = { - "epoch": 20, - "pop_size": 50, - "pp": 0.1, - } - paras_sho = { - "epoch": 20, - "pop_size": 50, - "h_factor": 5.0, - "N_tried": 10, - } - paras_slo = paras_modified_slo = { - "epoch": 20, - "pop_size": 50, - } - paras_improved_slo = { - "epoch": 20, - "pop_size": 50, - "c1": 1.2, - "c2": 1.2 - } - paras_srsr = { - "epoch": 20, - "pop_size": 50, - } - paras_ssa = { - "epoch": 20, - "pop_size": 50, - "ST": 0.8, - "PD": 0.2, - "SD": 0.1, - } - paras_sso = { - "epoch": 20, - "pop_size": 50, - } - paras_sspidera = { - "epoch": 20, - "pop_size": 50, - "r_a": 1.0, - "p_c": 0.7, - "p_m": 0.1 - } - paras_sspidero = { - "epoch": 20, - "pop_size": 50, - "fp_min": 0.65, - "fp_max": 0.9 - } - paras_woa = { - "epoch": 20, - "pop_size": 50, - } - paras_hi_woa = { - "epoch": 20, - "pop_size": 50, - "feedback_max": 10 - } + paras_abc = { + "epoch": 20, + "pop_size": 50, + "n_elites": 16, + "n_others": 4, + "patch_size": 5.0, + "patch_reduction": 0.985, + "n_sites": 3, + "n_elite_sites": 1, + } + paras_acor = { + "epoch": 20, + "pop_size": 50, + "sample_count": 25, + "intent_factor": 0.5, + "zeta": 1.0, + } + paras_alo = { + "epoch": 20, + "pop_size": 50, + } + paras_ao = { + "epoch": 20, + "pop_size": 50, + } + paras_ba = { + "epoch": 20, + "pop_size": 50, + "loudness": 0.8, + "pulse_rate": 0.95, + "pf_min": 0., + "pf_max": 10., + } + paras_adaptive_ba = { + "epoch": 20, + "pop_size": 50, + "loudness_min": 1.0, + "loudness_max": 2.0, + "pr_min": 0.15, + "pr_max": 0.85, + "pf_min": 0., + "pf_max": 10., + } + paras_dev_ba = { + "epoch": 20, + "pop_size": 50, + "pulse_rate": 0.95, + "pf_min": 0., + "pf_max": 10., + } + paras_beesa = { + "epoch": 20, + "pop_size": 50, + "selected_site_ratio": 0.5, + "elite_site_ratio": 0.4, + "selected_site_bee_ratio": 0.1, + "elite_site_bee_ratio": 2.0, + "dance_radius": 0.1, + "dance_reduction": 0.99, + } + paras_prob_beesa = { + "epoch": 20, + "pop_size": 50, + "recruited_bee_ratio": 0.1, + "dance_radius": 0.1, + "dance_reduction": 0.99, + } + paras_bes = { + "epoch": 20, + "pop_size": 50, + "a_factor": 10, + "R_factor": 1.5, + "alpha": 2.0, + "c1": 2.0, + "c2": 2.0, + } + paras_bfo = { + "epoch": 20, + "pop_size": 50, + "Ci": 0.01, + "Ped": 0.25, + "Nc": 5, + "Ns": 4, + "d_attract": 0.1, + "w_attract": 0.2, + "h_repels": 0.1, + "w_repels": 10, + } + paras_abfo = { + "epoch": 20, + "pop_size": 50, + "C_s": 0.1, + "C_e": 0.001, + "Ped": 0.01, + "Ns": 4, + "N_adapt": 4, + "N_split": 40, + } + paras_bsa = { + "epoch": 20, + "pop_size": 50, + "ff": 10, + "pff": 0.8, + "c1": 1.5, + "c2": 1.5, + "a1": 1.0, + "a2": 1.0, + "fl": 0.5, + } + paras_coa = { + "epoch": 20, + "pop_size": 50, + "n_coyotes": 5, + } + paras_csa = { + "epoch": 20, + "pop_size": 50, + "p_a": 0.3, + } + paras_cso = { + "epoch": 20, + "pop_size": 50, + "mixture_ratio": 0.15, + "smp": 5, + "spc": False, + "cdc": 0.8, + "srd": 0.15, + "c1": 0.4, + "w_min": 0.4, + "w_max": 0.9, + "selected_strategy": 1, + } + paras_do = { + "epoch": 20, + "pop_size": 50, + } + paras_eho = { + "epoch": 20, + "pop_size": 50, + "alpha": 0.5, + "beta": 0.5, + "n_clans": 5, + } + paras_fa = { + "epoch": 20, + "pop_size": 50, + "max_sparks": 20, + "p_a": 0.04, + "p_b": 0.8, + "max_ea": 40, + "m_sparks": 5, + } + paras_ffa = { + "epoch": 20, + "pop_size": 50, + "gamma": 0.001, + "beta_base": 2, + "alpha": 0.2, + "alpha_damp": 0.99, + "delta": 0.05, + "exponent": 2, + } + paras_foa = { + "epoch": 20, + "pop_size": 50, + } + paras_goa = { + "epoch": 20, + "pop_size": 50, + "c_min": 0.00004, + "c_max": 1.0, + } + paras_gwo = { + "epoch": 20, + "pop_size": 50, + } + paras_hgs = { + "epoch": 20, + "pop_size": 50, + "PUP": 0.08, + "LH": 10000, + } + paras_hho = { + "epoch": 20, + "pop_size": 50, + } + paras_ja = { + "epoch": 20, + "pop_size": 50, + } + paras_mfo = { + "epoch": 20, + "pop_size": 50, + } + paras_mrfo = { + "epoch": 20, + "pop_size": 50, + "somersault_range": 2.0, + } + paras_msa = { + "epoch": 20, + "pop_size": 50, + "n_best": 5, + "partition": 0.5, + "max_step_size": 1.0, + } + paras_nmra = { + "epoch": 20, + "pop_size": 50, + "pb": 0.75, + } + paras_improved_nmra = { + "epoch": 20, + "pop_size": 50, + "pb": 0.75, + "pm": 0.01, + } + paras_pfa = { + "epoch": 20, + "pop_size": 50, + } + paras_pso = { + "epoch": 20, + "pop_size": 50, + "c1": 2.05, + "c2": 2.05, + "w_min": 0.4, + "w_max": 0.9, + } + paras_ppso = { + "epoch": 20, + "pop_size": 50, + } + paras_hpso_tvac = { + "epoch": 20, + "pop_size": 50, + "ci": 0.5, + "cf": 0.0, + } + paras_cpso = { + "epoch": 20, + "pop_size": 50, + "c1": 2.05, + "c2": 2.05, + "w_min": 0.4, + "w_max": 0.9, + } + paras_clpso = { + "epoch": 20, + "pop_size": 50, + "c_local": 1.2, + "w_min": 0.4, + "w_max": 0.9, + "max_flag": 7, + } + paras_sfo = { + "epoch": 20, + "pop_size": 50, + "pp": 0.1, + "AP": 4.0, + "epsilon": 0.0001, + } + paras_improved_sfo = { + "epoch": 20, + "pop_size": 50, + "pp": 0.1, + } + paras_sho = { + "epoch": 20, + "pop_size": 50, + "h_factor": 5.0, + "N_tried": 10, + } + paras_slo = paras_modified_slo = { + "epoch": 20, + "pop_size": 50, + } + paras_improved_slo = { + "epoch": 20, + "pop_size": 50, + "c1": 1.2, + "c2": 1.2 + } + paras_srsr = { + "epoch": 20, + "pop_size": 50, + } + paras_ssa = { + "epoch": 20, + "pop_size": 50, + "ST": 0.8, + "PD": 0.2, + "SD": 0.1, + } + paras_sso = { + "epoch": 20, + "pop_size": 50, + } + paras_sspidera = { + "epoch": 20, + "pop_size": 50, + "r_a": 1.0, + "p_c": 0.7, + "p_m": 0.1 + } + paras_sspidero = { + "epoch": 20, + "pop_size": 50, + "fp_min": 0.65, + "fp_max": 0.9 + } + paras_woa = { + "epoch": 20, + "pop_size": 50, + } + paras_hi_woa = { + "epoch": 20, + "pop_size": 50, + "feedback_max": 10 + } - if __name__ == "__main__": - model = BBO.BaseBBO(**paras_bbo) - model = BBO.OriginalBBO(**paras_bbo) - model = EOA.OriginalEOA(**paras_eoa) - model = IWO.OriginalIWO(**paras_eoa) - model = SBO.BaseSBO(**paras_sbo) - model = SBO.OriginalSBO(**paras_sbo) - model = SMA.BaseSMA(**paras_sma) - model = SMA.OriginalSMA(**paras_sma) - model = VCS.BaseVCS(**paras_vcs) - model = VCS.OriginalVCS(**paras_vcs) - model = WHO.OriginalWHO(**paras_vcs) + if __name__ == "__main__": + model = BBO.DevBBO(**paras_bbo) + model = BBO.OriginalBBO(**paras_bbo) + model = EOA.OriginalEOA(**paras_eoa) + model = IWO.OriginalIWO(**paras_eoa) + model = SBO.DevSBO(**paras_sbo) + model = SBO.OriginalSBO(**paras_sbo) + model = SMA.DevSMA(**paras_sma) + model = SMA.OriginalSMA(**paras_sma) + model = VCS.DevVCS(**paras_vcs) + model = VCS.OriginalVCS(**paras_vcs) + model = WHO.OriginalWHO(**paras_vcs) - model = CRO.OriginalCRO(**paras_cro) - model = CRO.OCRO(**paras_ocro) - model = DE.BaseDE(**paras_de) - model = DE.JADE(**paras_jade) - model = DE.SADE(**paras_sade) - model = DE.SHADE(**paras_shade) - model = DE.L_SHADE(**paras_lshade) - model = DE.SAP_DE(**paras_sap_de) - model = EP.OriginalEP(**paras_ep) - model = EP.LevyEP(**paras_levy_ep) - model = ES.OriginalES(**paras_ep) - model = ES.LevyES(**paras_levy_ep) - model = FPA.OriginalFPA(**paras_fpa) - model = GA.BaseGA(**paras_ga) - model = GA.SingleGA(**paras_single_ga) - model = GA.MultiGA(**paras_multi_ga) - model = MA.OriginalMA(**paras_ma) + model = CRO.OriginalCRO(**paras_cro) + model = CRO.OCRO(**paras_ocro) + # model = DE.BaseDE(**paras_de) + model = DE.JADE(**paras_jade) + model = DE.SADE(**paras_sade) + model = SHADE.OriginalSHADE(**paras_shade) + model = SHADE.L_SHADE(**paras_lshade) + model = DE.SAP_DE(**paras_sap_de) + model = EP.OriginalEP(**paras_ep) + model = EP.LevyEP(**paras_levy_ep) + model = ES.OriginalES(**paras_ep) + model = ES.LevyES(**paras_levy_ep) + model = FPA.OriginalFPA(**paras_fpa) + model = GA.BaseGA(**paras_ga) + model = GA.SingleGA(**paras_single_ga) + model = GA.MultiGA(**paras_multi_ga) + model = MA.OriginalMA(**paras_ma) - model = BRO.BaseBRO(**paras_bro) - model = BRO.OriginalBRO(**paras_bro) - model = BSO.OriginalBSO(**paras_bso) - model = BSO.ImprovedBSO(**paras_improved_bso) - model = CA.OriginalCA(**paras_ca) - model = CHIO.BaseCHIO(**paras_chio) - model = CHIO.OriginalCHIO(**paras_chio) - model = FBIO.BaseFBIO(**paras_fbio) - model = FBIO.OriginalFBIO(**paras_fbio) - model = GSKA.BaseGSKA(**paras_base_gska) - model = GSKA.OriginalGSKA(**paras_gska) - model = ICA.OriginalICA(**paras_ica) - model = LCO.BaseLCO(**paras_lco) - model = LCO.OriginalLCO(**paras_lco) - model = LCO.ImprovedLCO(**paras_improved_lco) - model = QSA.BaseQSA(**paras_qsa) - model = QSA.OriginalQSA(**paras_qsa) - model = QSA.OppoQSA(**paras_qsa) - model = QSA.LevyQSA(**paras_qsa) - model = QSA.ImprovedQSA(**paras_qsa) - model = SARO.BaseSARO(**paras_saro) - model = SARO.OriginalSARO(**paras_saro) - model = SSDO.OriginalSSDO(**paras_ssdo) - model = TLO.BaseTLO(**paras_tlo) - model = TLO.OriginalTLO(**paras_tlo) - model = TLO.ImprovedTLO(**paras_improved_tlo) + model = BRO.DevBRO(**paras_bro) + model = BRO.OriginalBRO(**paras_bro) + model = BSO.OriginalBSO(**paras_bso) + model = BSO.ImprovedBSO(**paras_improved_bso) + model = CA.OriginalCA(**paras_ca) + model = CHIO.DevCHIO(**paras_chio) + model = CHIO.OriginalCHIO(**paras_chio) + model = FBIO.DevFBIO(**paras_fbio) + model = FBIO.OriginalFBIO(**paras_fbio) + model = GSKA.DevGSKA(**paras_base_gska) + model = GSKA.OriginalGSKA(**paras_gska) + model = ICA.OriginalICA(**paras_ica) + model = LCO.DevLCO(**paras_lco) + model = LCO.OriginalLCO(**paras_lco) + model = LCO.ImprovedLCO(**paras_improved_lco) + model = QSA.DevQSA(**paras_qsa) + model = QSA.OriginalQSA(**paras_qsa) + model = QSA.OppoQSA(**paras_qsa) + model = QSA.LevyQSA(**paras_qsa) + model = QSA.ImprovedQSA(**paras_qsa) + model = SARO.DevSARO(**paras_saro) + model = SARO.OriginalSARO(**paras_saro) + model = SSDO.OriginalSSDO(**paras_ssdo) + model = TLO.DevTLO(**paras_tlo) + model = TLO.OriginalTLO(**paras_tlo) + model = TLO.ImprovedTLO(**paras_improved_tlo) - model = AOA.OriginalAOA(**paras_aoa) - model = CEM.OriginalCEM(**paras_cem) - model = CGO.OriginalCGO(**paras_cgo) - model = GBO.OriginalGBO(**paras_gbo) - model = HC.OriginalHC(**paras_hc) - model = HC.SwarmHC(**paras_swarm_hc) - model = PSS.OriginalPSS(**paras_pss) - model = SCA.OriginalSCA(**paras_sca) - model = SCA.BaseSCA(**paras_sca) + model = AOA.OriginalAOA(**paras_aoa) + model = CEM.OriginalCEM(**paras_cem) + model = CGO.OriginalCGO(**paras_cgo) + model = GBO.OriginalGBO(**paras_gbo) + model = HC.OriginalHC(**paras_hc) + model = HC.SwarmHC(**paras_swarm_hc) + model = PSS.OriginalPSS(**paras_pss) + model = SCA.OriginalSCA(**paras_sca) + model = SCA.DevSCA(**paras_sca) - model = HS.BaseHS(**paras_hs) - model = HS.OriginalHS(**paras_hs) + model = HS.DevHS(**paras_hs) + model = HS.OriginalHS(**paras_hs) - model = AEO.OriginalAEO(**paras_aeo) - model = AEO.EnhancedAEO(**paras_aeo) - model = AEO.ModifiedAEO(**paras_aeo) - model = AEO.ImprovedAEO(**paras_aeo) - model = AEO.AugmentedAEO(**paras_aeo) - model = GCO.BaseGCO(**paras_aeo) - model = GCO.OriginalGCO(**paras_aeo) - model = WCA.OriginalWCA(**paras_wca) + model = AEO.OriginalAEO(**paras_aeo) + model = AEO.EnhancedAEO(**paras_aeo) + model = AEO.ModifiedAEO(**paras_aeo) + model = AEO.ImprovedAEO(**paras_aeo) + model = AEO.AugmentedAEO(**paras_aeo) + model = GCO.DevGCO(**paras_aeo) + model = GCO.OriginalGCO(**paras_aeo) + model = WCA.OriginalWCA(**paras_wca) - model = ArchOA.OriginalArchOA(**paras_archoa) - model = ASO.OriginalASO(**paras_aso) - model = EFO.OriginalEFO(**paras_efo) - model = EFO.BaseEFO(**paras_efo) - model = EO.OriginalEO(**paras_eo) - model = EO.AdaptiveEO(**paras_eo) - model = EO.ModifiedEO(**paras_eo) - model = HGSO.OriginalHGSO(**paras_hgso) - model = MVO.OriginalMVO(**paras_mvo) - model = NRO.OriginalNRO(**paras_nro) - model = SA.OriginalSA(**paras_sa) - model = SA.SwarmSA(**paras_sa) - model = SA.GaussianSA(**paras_sa) - model = TWO.OriginalTWO(**paras_two) - model = TWO.OppoTWO(**paras_two) - model = TWO.LevyTWO(**paras_two) - model = TWO.EnhancedTWO(**paras_two) - model = WDO.OriginalWDO(**paras_wdo) + model = ArchOA.OriginalArchOA(**paras_archoa) + model = ASO.OriginalASO(**paras_aso) + model = EFO.OriginalEFO(**paras_efo) + model = EFO.DevEFO(**paras_efo) + model = EO.OriginalEO(**paras_eo) + model = EO.AdaptiveEO(**paras_eo) + model = EO.ModifiedEO(**paras_eo) + model = HGSO.OriginalHGSO(**paras_hgso) + model = MVO.OriginalMVO(**paras_mvo) + model = NRO.OriginalNRO(**paras_nro) + model = SA.OriginalSA(**paras_sa) + model = SA.SwarmSA(**paras_sa) + model = SA.GaussianSA(**paras_sa) + model = TWO.OriginalTWO(**paras_two) + model = TWO.OppoTWO(**paras_two) + model = TWO.LevyTWO(**paras_two) + model = TWO.EnhancedTWO(**paras_two) + model = WDO.OriginalWDO(**paras_wdo) - model = ABC.OriginalABC(**paras_abc) - model = ACOR.OriginalACOR(**paras_acor) - model = ALO.OriginalALO(**paras_alo) - model = AO.OriginalAO(**paras_ao) - model = ALO.BaseALO(**paras_alo) - model = BA.OriginalBA(**paras_ba) - model = BA.AdaptiveBA(**paras_adaptive_ba) - model = BA.ModifiedBA(**paras_modified_ba) - model = BeesA.OriginalBeesA(**paras_beesa) - model = BeesA.ProbBeesA(**paras_prob_beesa) - model = BES.OriginalBES(**paras_bes) - model = BFO.OriginalBFO(**paras_bfo) - model = BFO.ABFO(**paras_abfo) - model = BSA.OriginalBSA(**paras_bsa) - model = COA.OriginalCOA(**paras_coa) - model = CSA.OriginalCSA(**paras_csa) - model = CSO.OriginalCSO(**paras_cso) - model = DO.OriginalDO(**paras_do) - model = EHO.OriginalEHO(**paras_eho) - model = FA.OriginalFA(**paras_fa) - model = FFA.OriginalFFA(**paras_ffa) - model = FOA.OriginalFOA(**paras_foa) - model = FOA.BaseFOA(**paras_foa) - model = FOA.WhaleFOA(**paras_foa) - model = GOA.OriginalGOA(**paras_goa) - model = GWO.OriginalGWO(**paras_gwo) - model = GWO.RW_GWO(**paras_gwo) - model = HGS.OriginalHGS(**paras_hgs) - model = HHO.OriginalHHO(**paras_hho) - model = JA.OriginalJA(**paras_ja) - model = JA.BaseJA(**paras_ja) - model = JA.LevyJA(**paras_ja) - model = MFO.OriginalMFO(**paras_mfo) - model = MFO.BaseMFO(**paras_mfo) - model = MRFO.OriginalMRFO(**paras_mrfo) - model = MSA.OriginalMSA(**paras_msa) - model = NMRA.ImprovedNMRA(**paras_improved_nmra) - model = NMRA.OriginalNMRA(**paras_nmra) - model = PFA.OriginalPFA(**paras_pfa) - model = PSO.OriginalPSO(**paras_pso) - model = PSO.PPSO(**paras_ppso) - model = PSO.HPSO_TVAC(**paras_hpso_tvac) - model = PSO.C_PSO(**paras_cpso) - model = PSO.CL_PSO(**paras_clpso) - model = SFO.OriginalSFO(**paras_sfo) - model = SFO.ImprovedSFO(**paras_improved_sfo) - model = SHO.OriginalSHO(**paras_sho) - model = SLO.OriginalSLO(**paras_slo) - model = SLO.ModifiedSLO(**paras_modified_slo) - model = SLO.ImprovedSLO(**paras_improved_slo) - model = SRSR.OriginalSRSR(**paras_srsr) - model = SSA.OriginalSSA(**paras_ssa) - model = SSA.BaseSSA(**paras_ssa) - model = SSO.OriginalSSO(**paras_sso) - model = SSpiderA.OriginalSSpiderA(**paras_sspidera) - model = SSpiderO.OriginalSSpiderO(**paras_sspidero) - model = WOA.OriginalWOA(**paras_woa) - model = WOA.HI_WOA(**paras_hi_woa) + model = ABC.OriginalABC(**paras_abc) + model = ACOR.OriginalACOR(**paras_acor) + model = ALO.OriginalALO(**paras_alo) + model = AO.OriginalAO(**paras_ao) + model = ALO.DevALO(**paras_alo) + model = BA.OriginalBA(**paras_ba) + model = BA.AdaptiveBA(**paras_adaptive_ba) + model = BA.DevBA(**paras_dev_ba) + model = BeesA.OriginalBeesA(**paras_beesa) + model = BeesA.ProbBeesA(**paras_prob_beesa) + model = BES.OriginalBES(**paras_bes) + model = BFO.OriginalBFO(**paras_bfo) + model = BFO.ABFO(**paras_abfo) + model = BSA.OriginalBSA(**paras_bsa) + model = COA.OriginalCOA(**paras_coa) + model = CSA.OriginalCSA(**paras_csa) + model = CSO.OriginalCSO(**paras_cso) + model = DO.OriginalDO(**paras_do) + model = EHO.OriginalEHO(**paras_eho) + model = FA.OriginalFA(**paras_fa) + model = FFA.OriginalFFA(**paras_ffa) + model = FOA.OriginalFOA(**paras_foa) + model = FOA.DevFOA(**paras_foa) + model = FOA.WhaleFOA(**paras_foa) + model = GOA.OriginalGOA(**paras_goa) + model = GWO.OriginalGWO(**paras_gwo) + model = GWO.RW_GWO(**paras_gwo) + model = HGS.OriginalHGS(**paras_hgs) + model = HHO.OriginalHHO(**paras_hho) + model = JA.OriginalJA(**paras_ja) + model = JA.DevJA(**paras_ja) + model = JA.LevyJA(**paras_ja) + model = MFO.OriginalMFO(**paras_mfo) + # model = MFO.BaseMFO(**paras_mfo) + model = MRFO.OriginalMRFO(**paras_mrfo) + model = MSA.OriginalMSA(**paras_msa) + model = NMRA.ImprovedNMRA(**paras_improved_nmra) + model = NMRA.OriginalNMRA(**paras_nmra) + model = PFA.OriginalPFA(**paras_pfa) + model = PSO.OriginalPSO(**paras_pso) + model = PSO.P_PSO(**paras_ppso) + model = PSO.HPSO_TVAC(**paras_hpso_tvac) + model = PSO.C_PSO(**paras_cpso) + model = PSO.CL_PSO(**paras_clpso) + model = SFO.OriginalSFO(**paras_sfo) + model = SFO.ImprovedSFO(**paras_improved_sfo) + model = SHO.OriginalSHO(**paras_sho) + model = SLO.OriginalSLO(**paras_slo) + model = SLO.ModifiedSLO(**paras_modified_slo) + model = SLO.ImprovedSLO(**paras_improved_slo) + model = SRSR.OriginalSRSR(**paras_srsr) + model = SSA.OriginalSSA(**paras_ssa) + model = SSA.DevSSA(**paras_ssa) + model = SSO.OriginalSSO(**paras_sso) + model = SSpiderA.OriginalSSpiderA(**paras_sspidera) + model = SSpiderO.OriginalSSpiderO(**paras_sspidero) + model = WOA.OriginalWOA(**paras_woa) + model = WOA.HI_WOA(**paras_hi_woa) - best_position, best_fitness = model.solve(P1) - print(model.get_parameters()) - print(model.get_name()) - print(model.problem.get_name()) - print(model.get_attributes()["g_best"]) + g_best = model.solve(problem) + print(model.get_parameters()) + print(model.get_name()) + print(model.problem.get_name()) + print(model.get_attributes()["g_best"]) .. toctree:: diff --git a/examples/applications/pytorch/linear_regression.py b/examples/applications/pytorch/linear_regression.py index bae747ef..d0279da2 100644 --- a/examples/applications/pytorch/linear_regression.py +++ b/examples/applications/pytorch/linear_regression.py @@ -26,7 +26,7 @@ def __init__(self, bounds, minmax="min", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) - def fit_func(self, x: np.ndarray): + def obj_func(self, x: np.ndarray): # Decode solution from real value to real-world solution x = self.decode_solution(x) opt, learning_rate, epoch = x["optimizer"], x["learning-rate"], x["epoch"] diff --git a/examples/run_all_parameters.py b/examples/run_all_parameters.py index c82e58e4..9957a48c 100644 --- a/examples/run_all_parameters.py +++ b/examples/run_all_parameters.py @@ -5,8 +5,9 @@ # --------------------------------------------------% from opfunu.cec_based.cec2017 import F292017 +from mealpy import FloatVar from mealpy.bio_based import BBO, EOA, IWO, SBO, SMA, TPO, VCS, WHO -from mealpy.evolutionary_based import CRO, DE, EP, ES, FPA, GA, MA +from mealpy.evolutionary_based import CRO, DE, EP, ES, FPA, GA, MA, SHADE from mealpy.human_based import BRO, BSO, CA, CHIO, FBIO, GSKA, ICA, LCO, QSA, SARO, SSDO, TLO from mealpy.math_based import AOA, CEM, CGO, GBO, HC, PSS, SCA from mealpy.music_based import HS @@ -18,9 +19,8 @@ f18 = F292017(ndim=30, f_bias=0) P1 = { - "fit_func": f18.evaluate, - "lb": f18.lb, - "ub": f18.ub, + "obj_func": f18.evaluate, + "bounds": FloatVar(lb=f18.lb, ub=f18.ub, name="delta"), "minmax": "min", "name": "F18" } @@ -727,25 +727,25 @@ } -model = BBO.BaseBBO(**paras_bbo) +model = BBO.DevBBO(**paras_bbo) model = BBO.OriginalBBO(**paras_bbo) model = EOA.OriginalEOA(**paras_eoa) model = IWO.OriginalIWO(**paras_eoa) -model = SBO.BaseSBO(**paras_sbo) +model = SBO.DevSBO(**paras_sbo) model = SBO.OriginalSBO(**paras_sbo) -model = SMA.BaseSMA(**paras_sma) +model = SMA.DevSMA(**paras_sma) model = SMA.OriginalSMA(**paras_sma) -model = VCS.BaseVCS(**paras_vcs) +model = VCS.DevVCS(**paras_vcs) model = VCS.OriginalVCS(**paras_vcs) model = WHO.OriginalWHO(**paras_vcs) model = CRO.OriginalCRO(**paras_cro) model = CRO.OCRO(**paras_ocro) -model = DE.BaseDE(**paras_de) +# model = DE.BaseDE(**paras_de) model = DE.JADE(**paras_jade) model = DE.SADE(**paras_sade) -model = DE.SHADE(**paras_shade) -model = DE.L_SHADE(**paras_lshade) +model = SHADE.OriginalSHADE(**paras_shade) +model = SHADE.L_SHADE(**paras_lshade) model = DE.SAP_DE(**paras_sap_de) model = EP.OriginalEP(**paras_ep) model = EP.LevyEP(**paras_levy_ep) @@ -757,30 +757,30 @@ model = GA.MultiGA(**paras_multi_ga) model = MA.OriginalMA(**paras_ma) -model = BRO.BaseBRO(**paras_bro) +model = BRO.DevBRO(**paras_bro) model = BRO.OriginalBRO(**paras_bro) model = BSO.OriginalBSO(**paras_bso) model = BSO.ImprovedBSO(**paras_improved_bso) model = CA.OriginalCA(**paras_ca) -model = CHIO.BaseCHIO(**paras_chio) +model = CHIO.DevCHIO(**paras_chio) model = CHIO.OriginalCHIO(**paras_chio) -model = FBIO.BaseFBIO(**paras_fbio) +model = FBIO.DevFBIO(**paras_fbio) model = FBIO.OriginalFBIO(**paras_fbio) -model = GSKA.BaseGSKA(**paras_base_gska) +model = GSKA.DevGSKA(**paras_base_gska) model = GSKA.OriginalGSKA(**paras_gska) model = ICA.OriginalICA(**paras_ica) -model = LCO.BaseLCO(**paras_lco) +model = LCO.DevLCO(**paras_lco) model = LCO.OriginalLCO(**paras_lco) model = LCO.ImprovedLCO(**paras_improved_lco) -model = QSA.BaseQSA(**paras_qsa) +model = QSA.DevQSA(**paras_qsa) model = QSA.OriginalQSA(**paras_qsa) model = QSA.OppoQSA(**paras_qsa) model = QSA.LevyQSA(**paras_qsa) model = QSA.ImprovedQSA(**paras_qsa) -model = SARO.BaseSARO(**paras_saro) +model = SARO.DevSARO(**paras_saro) model = SARO.OriginalSARO(**paras_saro) model = SSDO.OriginalSSDO(**paras_ssdo) -model = TLO.BaseTLO(**paras_tlo) +model = TLO.DevTLO(**paras_tlo) model = TLO.OriginalTLO(**paras_tlo) model = TLO.ImprovedTLO(**paras_improved_tlo) @@ -792,9 +792,9 @@ model = HC.SwarmHC(**paras_swarm_hc) model = PSS.OriginalPSS(**paras_pss) model = SCA.OriginalSCA(**paras_sca) -model = SCA.BaseSCA(**paras_sca) +model = SCA.DevSCA(**paras_sca) -model = HS.BaseHS(**paras_hs) +model = HS.DevHS(**paras_hs) model = HS.OriginalHS(**paras_hs) model = AEO.OriginalAEO(**paras_aeo) @@ -802,14 +802,14 @@ model = AEO.ModifiedAEO(**paras_aeo) model = AEO.ImprovedAEO(**paras_aeo) model = AEO.AugmentedAEO(**paras_aeo) -model = GCO.BaseGCO(**paras_aeo) +model = GCO.DevGCO(**paras_aeo) model = GCO.OriginalGCO(**paras_aeo) model = WCA.OriginalWCA(**paras_wca) model = ArchOA.OriginalArchOA(**paras_archoa) model = ASO.OriginalASO(**paras_aso) model = EFO.OriginalEFO(**paras_efo) -model = EFO.BaseEFO(**paras_efo) +model = EFO.DevEFO(**paras_efo) model = EO.OriginalEO(**paras_eo) model = EO.AdaptiveEO(**paras_eo) model = EO.ModifiedEO(**paras_eo) @@ -828,10 +828,10 @@ model = ACOR.OriginalACOR(**paras_acor) model = ALO.OriginalALO(**paras_alo) model = AO.OriginalAO(**paras_ao) -model = ALO.BaseALO(**paras_alo) +model = ALO.DevALO(**paras_alo) model = BA.OriginalBA(**paras_ba) model = BA.AdaptiveBA(**paras_adaptive_ba) -model = BA.ModifiedBA(**paras_modified_ba) +model = BA.DevBA(**paras_modified_ba) model = BeesA.OriginalBeesA(**paras_beesa) model = BeesA.ProbBeesA(**paras_prob_beesa) model = BES.OriginalBES(**paras_bes) @@ -846,7 +846,7 @@ model = FA.OriginalFA(**paras_fa) model = FFA.OriginalFFA(**paras_ffa) model = FOA.OriginalFOA(**paras_foa) -model = FOA.BaseFOA(**paras_foa) +model = FOA.DevFOA(**paras_foa) model = FOA.WhaleFOA(**paras_foa) model = GOA.OriginalGOA(**paras_goa) model = GWO.OriginalGWO(**paras_gwo) @@ -854,17 +854,17 @@ model = HGS.OriginalHGS(**paras_hgs) model = HHO.OriginalHHO(**paras_hho) model = JA.OriginalJA(**paras_ja) -model = JA.BaseJA(**paras_ja) +model = JA.DevJA(**paras_ja) model = JA.LevyJA(**paras_ja) model = MFO.OriginalMFO(**paras_mfo) -model = MFO.BaseMFO(**paras_mfo) +# model = MFO.BaseMFO(**paras_mfo) model = MRFO.OriginalMRFO(**paras_mrfo) model = MSA.OriginalMSA(**paras_msa) model = NMRA.ImprovedNMRA(**paras_improved_nmra) model = NMRA.OriginalNMRA(**paras_nmra) model = PFA.OriginalPFA(**paras_pfa) model = PSO.OriginalPSO(**paras_pso) -model = PSO.PPSO(**paras_ppso) +model = PSO.P_PSO(**paras_ppso) model = PSO.HPSO_TVAC(**paras_hpso_tvac) model = PSO.C_PSO(**paras_cpso) model = PSO.CL_PSO(**paras_clpso) @@ -876,15 +876,15 @@ model = SLO.ImprovedSLO(**paras_improved_slo) model = SRSR.OriginalSRSR(**paras_srsr) model = SSA.OriginalSSA(**paras_ssa) -model = SSA.BaseSSA(**paras_ssa) +model = SSA.DevSSA(**paras_ssa) model = SSO.OriginalSSO(**paras_sso) model = SSpiderA.OriginalSSpiderA(**paras_sspidera) model = SSpiderO.OriginalSSpiderO(**paras_sspidero) model = WOA.OriginalWOA(**paras_woa) model = WOA.HI_WOA(**paras_hi_woa) -best_position, best_fitness = model.solve(P1) +g_best = model.solve(P1) print(model.get_parameters()) print(model.get_name()) print(model.problem.get_name()) -print(model.get_attributes()["solution"]) +print(g_best) \ No newline at end of file