-
Notifications
You must be signed in to change notification settings - Fork 263
/
Copy pathfermodel_example_webcam.py
85 lines (61 loc) · 2.46 KB
/
fermodel_example_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# This file allows to perform Emotion detection on frames grabbed from the webcam
# using OpenCV-Python
import cv2
from EmoPy.src.fermodel import FERModel
def capture_image(video_capture, file):
# Capturing a smaller image fçor speed purposes
video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 360)
video_capture.set(cv2.CAP_PROP_FPS, 15)
if video_capture.isOpened():
ret = False
print("Capturing image ...")
counter = 0
max_tries = 100
while not ret and video_capture.isOpened():
counter += 1
if counter >= max_tries:
return None
# Capture frame-by-frame
ret, frame = video_capture.read()
# Save the captured frame on disk
cv2.imwrite(file, frame)
print("Image written to: ", file)
else:
print("Cannot access the webcam")
video_capture.release()
return frame
def display_prediction(frame, frameString, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1, thickness=2):
# Display emotion
retval, _ = cv2.getTextSize(
frameString, fontFace, fontScale, thickness)
cv2.rectangle(frame, (0, 0), (20 + retval[0], 50), (0, 0, 0), -1)
cv2.putText(frame, frameString, (10, 35), fontFace, fontScale,
(255, 255, 255), thickness, cv2.LINE_AA)
window_name = 'EmoPy Assessment'
cv2.imshow(window_name, frame)
while True:
key = cv2.waitKey(1)
# Press Esc to exit the window
if key == 27 or cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) < 1:
break
# Closes all windows
cv2.destroyAllWindows()
def get_emotion_from_camera():
# Specify the camera which you want to use. The default argument is '0'
video_capture = cv2.VideoCapture(0)
file = 'image_data/image.jpg'
frame = capture_image(video_capture, file)
if frame is not None:
# Can choose other target emotions from the emotion subset defined in
# fermodel.py in src directory. The function
# defined as `def _check_emotion_set_is_supported(self):`
target_emotions = ['calm', 'anger', 'happiness']
model = FERModel(target_emotions, verbose=True)
frame_string = model.predict(file)
display_prediction(frame, frame_string)
else:
print("Image could not be captured")
if __name__ == '__main__':
get_emotion_from_camera()