-
Notifications
You must be signed in to change notification settings - Fork 0
/
mistral.py
742 lines (588 loc) · 28.7 KB
/
mistral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import quant
import warnings
from gptq import GPTQ, Observer
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders, export_quant_table, gen_conditions
from texttable import Texttable
from transformers import AutoTokenizer, AutoModelForCausalLM
import gc
from typing import List, Optional, Tuple, Union
import math
import types
from transformers.models.mistral.modeling_mistral import (
MistralAttention,
MistralMLP,
apply_rotary_pos_emb,
repeat_kv
)
from transformers.cache_utils import Cache
from utils.utils import parse_args,load_llava
def get_llama(model):
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model, torch_dtype=torch.bfloat16)
model.seqlen = 2048
return model
class Delta(nn.Module):
def __init__(self,base,U,S,V):
super().__init__()
self.register_buffer("base", base)
self.register_buffer("U", None)
self.register_buffer("V", None)
self.register_buffer("S", None)
self.register_buffer("U_total", U)
self.register_buffer("V_total", V)
self.register_buffer("S_total", S)
def pre_quant(self,cur_col,pre_col=0):
self.U = self.U_total[:,pre_col:cur_col]
self.S = self.S_total[pre_col:cur_col]
self.V = self.V_total[:,pre_col:cur_col]
def post_quant(self,bit,name):
if args.save_trained_path is not None:
tmp[name + f".U_{bit}"] = self.U
tmp[name + f".S_{bit}"] = self.S
tmp[name + f".V_{bit}"] = self.V
if tmp.get(name + ".base") is None:
tmp[name + ".base"] = self.base
self.base = self.base + self.U @ torch.diag(self.S) @ self.V.T
def forward(self, x, gptq=None,quant_type=None):
# TODO: This can be faster
if gptq is not None:
if quant_type == "V":
gptq.add_batch(x[0].data, x[0].data)
else:
y = x.clone()
w_ = (torch.diag(self.S) @ self.V.T).to(x.dtype)
y = y @ w_.T
gptq.add_batch(y[0].data, y[0].data)
w = (self.base + self.U @ torch.diag(self.S) @ self.V.T).to(x.dtype)
return x @ w.T
def mistral_quant_attn_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
quant_type = gptqs.get("quant_type",None)
gptq_q , gptq_k , gptq_v , gptq_o = None, None, None, None
if len(gptqs.keys()) == 4:
for k,v in gptqs.items():
if "q_proj" in k:
gptq_q = v
elif "k_proj" in k:
gptq_k = v
elif "v_proj" in k:
gptq_v = v
else:
for k,v in gptqs.items():
if "o_proj" in k:
gptq_o = v
query_states = self.q_proj(hidden_states,gptq_q,quant_type)
key_states = self.k_proj(hidden_states,gptq_k,quant_type)
value_states = self.v_proj(hidden_states,gptq_v,quant_type)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output,gptq_o,quant_type)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def mistral_quant_mlp_forward(self, x):
quant_type = gptqs.get("quant_type",None)
gptq_up , gptq_gate , gptq_down = None, None, None
if len(gptqs.keys()) == 3:
for k,v in gptqs.items():
if "up_proj" in k:
gptq_up = v
elif "gate_proj" in k:
gptq_gate = v
else:
for k,v in gptqs.items():
if "down_proj" in k:
gptq_down = v
return self.down_proj(self.act_fn(self.gate_proj(x,gptq_gate,quant_type)) * self.up_proj(x,gptq_up,quant_type),gptq_down,quant_type)
def enable_mistral_quant_forward(model):
for name, module in reversed(model._modules.items()):
if len(list(module.children())) > 0:
enable_mistral_quant_forward(
module,
)
if isinstance(module, MistralAttention):
model._modules[name].forward = types.MethodType(
mistral_quant_attn_forward, model._modules[name]
)
if isinstance(module, MistralMLP):
model._modules[name].forward = types.MethodType(
mistral_quant_mlp_forward, model._modules[name]
)
gptqs = {}
@torch.no_grad()
def llama_sequential(model, dataloader, dev):
print('Starting ...')
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
model.model.norm = model.model.norm.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
model.model.norm = model.model.norm.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
print('Ready.')
quantizers = {}
observer = Observer()
state_dict = torch.load(args.saved_delta_path)
for name, module in model.named_modules():
if "vision" in name:
continue
if "self_attn" in name or "mlp" in name:
for subname, submodule in module.named_children():
if "proj" in subname:
setattr(module, subname, None)
gc.collect()
torch.cuda.empty_cache()
base = state_dict[name + "." + subname + ".base"]
U = state_dict[name + "." + subname + ".U"]
V = state_dict[name + "." + subname + ".V"]
S = state_dict[name + "." + subname + ".S"]
setattr(module, subname, Delta(base=base, U=U, S=S, V=V))
enable_mistral_quant_forward(model)
bits = args.bits
for i in range(len(layers)):
layer = layers[i].to(dev)
if args.attn_fp16_col != 0 or args.mlp_fp16_col != 0:
params = ['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj','self_attn.o_proj','mlp.up_proj', 'mlp.gate_proj','mlp.down_proj']
for param in params:
cur_col = args.attn_fp16_col if "self_attn" in param else args.mlp_fp16_col
layer.get_submodule(param).pre_quant(pre_col=0,cur_col=cur_col)
layer.get_submodule(param).post_quant(bit=16,name=f"model.layers.{i}." + param)
for bit in bits:
print(f'Quantizing layer {bit}bit {i+1}/{len(layers)}..')
print('+------------------+--------------+------------+-----------+-------+')
print('| name | weight_error | fp_inp_SNR | q_inp_SNR | time |')
print('+==================+==============+============+===========+=======+')
if args.true_sequential:
sequential = [['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj'],['self_attn.o_proj'],['mlp.up_proj', 'mlp.gate_proj'],['mlp.down_proj']]
for names in sequential:
for name in names:
if bit == 8:
if "self_attn" in name:
pre_col, cur_col = args.attn_fp16_col, args.attn_fp16_col + args.attn_int8_col
else:
pre_col, cur_col = args.mlp_fp16_col , args.mlp_fp16_col + args.mlp_int8_col
elif bit == 4:
if "self_attn" in name:
pre_col, cur_col = args.attn_fp16_col + args.attn_int8_col, args.attn_fp16_col + args.attn_int8_col + args.attn_int4_col
else:
pre_col, cur_col = args.mlp_fp16_col + args.mlp_int8_col, args.mlp_fp16_col + args.mlp_int8_col + args.mlp_int4_col
elif bit == 3:
if "self_attn" in name:
pre_col, cur_col = args.attn_fp16_col + args.attn_int8_col + args.attn_int4_col ,args.attn_fp16_col + args.attn_int8_col + args.attn_int4_col + args.attn_int3_col
else:
pre_col, cur_col = args.mlp_fp16_col + args.mlp_int8_col + args.mlp_int4_col , args.mlp_fp16_col + args.mlp_int8_col + args.mlp_int4_col + args.mlp_int3_col
elif bit == 2:
if "self_attn" in name:
pre_col, cur_col = args.attn_fp16_col + args.attn_int8_col + args.attn_int4_col + args.attn_int3_col ,args.attn_fp16_col + args.attn_int8_col + args.attn_int4_col + args.attn_int3_col + args.attn_int2_col
else:
pre_col, cur_col = args.mlp_fp16_col + args.mlp_int8_col + args.mlp_int4_col + args.mlp_int3_col , args.mlp_fp16_col + args.mlp_int8_col + args.mlp_int4_col + args.mlp_int3_col + args.mlp_int2_col
layer.get_submodule(name).pre_quant(pre_col=pre_col,cur_col=cur_col)
for names in sequential:
for ii in range(2):
quant_type = "V" if ii == 0 else "U"
for name in names:
name = f"model.layers.{i}." + name
gptq = GPTQ(model.get_submodule(name), quant_type=quant_type,observe=args.observe)
gptq.quantizer.configure(bit, perchannel=True, sym=args.sym, mse=False)
gptqs[name] = gptq
gptqs["quant_type"] = quant_type
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
for k,v in gptqs.items():
if "proj" in k:
gptq = v
scale, zero, g_idx, error = gptq.fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=k.rsplit(".")[-1] + f".{quant_type}")
gptqs.clear()
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
for names in sequential:
for name in names:
if bit != bits[-1]:
layer.get_submodule(name).post_quant(bit=bit,name=f"model.layers.{i}." + name)
inps, outs = outs, inps
print('+------------------+--------------+------------+-----------+-------+')
print('\n')
layers[i] = layer.cpu()
del layer
del gptq
torch.cuda.empty_cache()
'''
with torch.no_grad():
for layer in layers:
for name, module in layer.named_modules():
if "proj" in name:
if "self_attn" in name:
pre_col, cur_col = args.int8_col + args.attn_int4_col, args.int8_col + args.attn_int4_col + args.attn_int1_col
else:
pre_col, cur_col = args.int8_col + args.mlp_int4_col, args.int8_col + args.mlp_int4_col + args.mlp_int1_col
layer.get_submodule(name).pre_quant(pre_col=pre_col,cur_col=cur_col)
U,V = layer.get_submodule(name).U, layer.get_submodule(name).V
U_total,V_total = layer.get_submodule(name).U_total, layer.get_submodule(name).V_total
coeff_u, coeff_v = U_total.float().abs().mean() , V_total.float().abs().mean()
sign_u,sign_v = torch.sign(U) , torch.sign(V)
mask_u , mask_v = sign_u == 0 , sign_v == 0
sign_u[mask_u] = 1
sign_v[mask_v] = 1
U , V = sign_u * coeff_u, sign_v * coeff_v
# coeff_test = delta_test.float().abs().mean()
# signs = torch.sign(delta_test)
# mask = signs == 0
# signs[mask] = 1
# delta_test = signs * coeff_test
'''
if args.observe:
observer.print()
conditions = gen_conditions(args.wbits, args.groupsize)
for item in observer.items():
name = item[0]
layerid = item[1]
gptq = item[2]['gptq']
error = item[2]['error']
target = error / 2
table = Texttable()
table.header(['wbits', 'groupsize', 'error'])
table.set_cols_dtype(['i', 'i', 'f'])
table.add_row([args.wbits, args.groupsize, error])
print('Optimizing {} {} ..'.format(name, layerid))
for wbits, groupsize in conditions:
if error < target:
# if error dropped 50%, skip
break
gptq.quantizer.configure(wbits, perchannel=True, sym=args.sym, mse=False)
scale, zero, g_idx, error = gptq.fasterquant(percdamp=args.percdamp, groupsize=groupsize, actorder=args.act_order, name=name)
table.add_row([wbits, groupsize, error])
quantizers['model.layers.%d.%s' % (layerid, name)] = (gptq.quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), wbits, groupsize)
print(table.draw())
print('\n')
gptq.layer.to('cpu')
gptq.free()
model.config.use_cache = use_cache
return quantizers
@torch.no_grad()
def llama_eval(model, testenc, dev):
print('Evaluating ...')
testenc = testenc.input_ids
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros((nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for i in range(nsamples):
batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev)
try:
model(batch)
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
for i in range(len(layers)):
print(i)
layer = layers[i].to(dev)
if args.nearest:
subset = find_layers(layer)
for name in subset:
quantizer = quant.Quantizer()
quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)
W = subset[name].weight.data
quantizer.find_params(W, weight=True)
subset[name].weight.data = quantizer.quantize(W).to(next(iter(layer.parameters())).dtype)
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
if model.model.norm is not None:
model.model.norm = model.model.norm.to(dev)
model.lm_head = model.lm_head.to(dev)
testenc = testenc.to(dev)
nlls = []
for i in range(nsamples):
hidden_states = inps[i].unsqueeze(0)
if model.model.norm is not None:
hidden_states = model.model.norm(hidden_states)
lm_logits = model.lm_head(hidden_states)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(ppl.item())
model.config.use_cache = use_cache
def llama_multigpu(model, gpus, gpu_dist):
model.model.embed_tokens = model.model.embed_tokens.to(gpus[0])
if hasattr(model.model, 'norm') and model.model.norm:
model.model.norm = model.model.norm.to(gpus[0])
import copy
model.lm_head = copy.deepcopy(model.lm_head).to(gpus[0])
cache = {'mask': None, 'position_ids': None}
class MoveModule(nn.Module):
def __init__(self, module, invalidate_cache):
super().__init__()
self.module = module
self.dev = next(iter(self.module.parameters())).device
self.invalidate_cache=invalidate_cache
def forward(self, *inp, **kwargs):
inp = list(inp)
if inp[0].device != self.dev:
inp[0] = inp[0].to(self.dev)
if cache['mask'] is None or cache['mask'].device != self.dev or self.invalidate_cache:
cache['mask'] = kwargs['attention_mask'].to(self.dev)
kwargs['attention_mask'] = cache['mask']
if cache['position_ids'] is None or cache['position_ids'].device != self.dev or self.invalidate_cache:
cache['position_ids'] = kwargs['position_ids'].to(self.dev)
kwargs['position_ids'] = cache['position_ids']
tmp = self.module(*inp, **kwargs)
return tmp
layers = model.model.layers
from math import ceil
if not gpu_dist:
pergpu = ceil(len(layers) / len(gpus))
for i in range(len(layers)):
layers[i] = MoveModule(layers[i].to(0 if i == 0 or i == len(layers) -1 else gpus[(i-1) // pergpu]), i==0)
else:
assert gpu_dist[0] >= 2, "At least two layers must be on GPU 0."
assigned_gpus = [0] * (gpu_dist[0]-1)
for i in range(1, len(gpu_dist)):
assigned_gpus = assigned_gpus + [i] * gpu_dist[i]
remaining_assignments = len(layers)-len(assigned_gpus) - 1
if remaining_assignments > 0:
assigned_gpus = assigned_gpus + [-1] * remaining_assignments
assigned_gpus = assigned_gpus + [0]
for i in range(len(layers)):
layers[i] = MoveModule(layers[i].to(gpus[assigned_gpus[i]]), i==0)
model.gpus = gpus
def benchmark(model, input_ids, check=False):
input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV)
torch.cuda.synchronize()
cache = {'past': None}
def clear_past(i):
def tmp(layer, inp, out):
if cache['past']:
cache['past'][i] = None
return tmp
for i, layer in enumerate(model.model.layers):
layer.register_forward_hook(clear_past(i))
print('Benchmarking ...')
if check:
loss = nn.CrossEntropyLoss()
tot = 0.
def sync():
if hasattr(model, 'gpus'):
for gpu in model.gpus:
torch.cuda.synchronize(gpu)
else:
torch.cuda.synchronize()
max_memory = 0
with torch.no_grad():
attention_mask = torch.ones((1, input_ids.numel()), device=DEV)
times = []
for i in range(input_ids.numel()):
tick = time.time()
out = model(input_ids[:, i:i + 1], past_key_values=cache['past'], attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1)))
sync()
times.append(time.time() - tick)
print(i, times[-1])
if hasattr(model, 'gpus'):
mem_allocated = sum(torch.cuda.memory_allocated(gpu) for gpu in model.gpus) / 1024 / 1024
else:
mem_allocated = torch.cuda.memory_allocated() / 1024 / 1024
max_memory = max(max_memory, mem_allocated)
if check and i != input_ids.numel() - 1:
tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float()
cache['past'] = list(out.past_key_values)
del out
sync()
print('Median:', np.median(times))
if check:
print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item())
print('max memory(MiB):', max_memory)
@torch.no_grad()
def save_compressed_delta(save_compressed_delta_dir,model):
compressed_delta = dict()
for name, module in model.named_modules():
if "vision_tower" in name:
continue
if "self_attn" in name or "mlp" in name:
for subname, submodule in module.named_children():
if "proj" in subname:
base = model.get_submodule(name + "." + subname).base
U,S,V = model.get_submodule(name + "." + subname).U, model.get_submodule(name + "." + subname).S , model.get_submodule(name + "." + subname).V
delta = (U @ torch.diag(S) @ V.t())
if args.save_trained_path is not None:
tmp[name + "." + subname + f".U_{args.bits[-1]}"] = U
tmp[name + "." + subname + f".S_{args.bits[-1]}"] = S
tmp[name + "." + subname + f".V_{args.bits[-1]}"] = V
compressed_delta[name + "." + subname + ".weight"] = (base + delta).to(torch.bfloat16)
torch.save(compressed_delta, save_compressed_delta_dir)
if args.save_trained_path is not None:
torch.save(tmp, args.save_trained_path)
if __name__ == '__main__':
args = parse_args()
if args.layers_dist:
gpu_dist = [int(x) for x in args.layers_dist.split(':')]
else:
gpu_dist = []
if type(args.load) is not str:
args.load = args.load.as_posix()
if args.load:
model = load_quant(args.model, args.load, args.wbits, args.groupsize)
else:
if "llava" not in args.model.lower():
model = get_llama(args.model)
model.eval()
else:
model = load_llava(args.model,"cuda" if torch.cuda.is_available() else "cpu")
if not hasattr(model, 'seqlen'):
model.seqlen = 2048
dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen)
if not args.load and args.wbits < 16 and not args.nearest:
tick = time.time()
tmp = dict()
quantizers = llama_sequential(model, dataloader, DEV)
if args.save_compressed_delta_dir is not None:
save_compressed_delta(args.save_compressed_delta_dir,model)
print(time.time() - tick)
if args.benchmark:
gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())]
if len(gpus) > 1:
llama_multigpu(model, gpus, gpu_dist)
else:
model = model.to(DEV)
if args.benchmark:
input_ids = next(iter(dataloader))[0][:, :args.benchmark]
benchmark(model, input_ids, check=args.check)
if args.eval:
datasets = ['wikitext2', 'ptb', 'c4']
if args.new_eval:
datasets = ['wikitext2', 'ptb-new', 'c4-new']
for dataset in datasets:
dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen)
print(dataset)
llama_eval(model, testloader, DEV)
if args.test_generation:
gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())]
if len(gpus) > 1:
llama_multigpu(model, gpus, gpu_dist)
else:
model = model.to(DEV)
from transformers import LlamaTokenizer, TextStreamer
tokenizer = LlamaTokenizer.from_pretrained(args.model, use_fast=False)
input_ids = tokenizer(["The capital of New Mexico is"], return_tensors="pt").input_ids.to(gpus[0])
streamer = TextStreamer(tokenizer)
with torch.no_grad():
generated_ids = model.generate(input_ids, streamer=streamer)
if args.quant_directory is not None:
export_quant_table(quantizers, args.quant_directory)