This repository has been archived by the owner on Jul 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdqn_agent.py
66 lines (57 loc) · 2.41 KB
/
dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import random
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, config):
self.state_size = config['state_size']
self.action_size = config['action_size']
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.update_target_freq = 5
self.batch_size = 30
self.model = self._build_model()
self.target_model = self._build_model()
self.update_target_network()
intersection_id = list(config['lane_phase_info'].keys())[0]
self.phase_list = config['lane_phase_info'][intersection_id]['phase']
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(40, input_dim=self.state_size, activation='relu'))
model.add(Dense(40, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model
def update_target_network(self):
weights = self.model.get_weights()
self.target_model.set_weights(weights)
def remember(self, state, action, reward, next_state):
action = self.phase_list.index(action)
self.memory.append((state, action, reward, next_state))
def choose_action(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self):
minibatch = random.sample(self.memory, self.batch_size)
for state, action, reward, next_state in minibatch:
target = (reward + self.gamma *
np.amax(self.target_model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)