This repository has been archived by the owner on Jul 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_rl.py
89 lines (78 loc) · 3.25 KB
/
run_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from cityflow_env import CityFlowEnv
from dqn_agent import DQNAgent
from utility import parse_roadnet
import numpy as np
import os
from utility import parse_arguments
args = parse_arguments()
roadnet = 'data/{}/roadnet.json'.format(args.scenario)
if __name__ == "__main__":
## configuration for both environment and agent
config = {
'scenario': args.scenario,
'data': 'data/{}'.format(args.scenario),
'roadnet': roadnet,
'flow': 'data/{}/flow.json'.format(args.scenario),
#'replay_data_path': 'data/frontend/web',
'num_step': args.num_step,
'lane_phase_info': parse_roadnet(roadnet) # get lane and phase mapping by parsing the roadnet
}
intersection_id = list(config['lane_phase_info'].keys())[0]
phase_list = config['lane_phase_info'][intersection_id]['phase']
config['state_size'] = len(config['lane_phase_info'][intersection_id]['start_lane']) + 1
config['action_size'] = len(phase_list)
# add visible gpu if necessary
os.environ["CUDA_VISIBLE_DEVICES"] = ''
env = CityFlowEnv(config)
agent = DQNAgent(config)
# some parameters in dqn
batch_size = 32
EPISODES = 100
learning_start = 300
update_model_freq = 300
update_target_model_freq = 1500
num_step = config['num_step']
state_size = config['state_size']
for e in range(EPISODES):
# reset initially at each episode
env.reset()
t = 0
state = env.get_state()
state = np.array(list(state['start_lane_vehicle_count'].values()) + [state['current_phase']]) # a sample state definition
state = np.reshape(state, [1, state_size])
last_action = phase_list[agent.choose_action(state)]
while t < num_step:
action = phase_list[agent.choose_action(state)]
if action == last_action:
env.step(action)
else:
for _ in range(env.yellow_time):
env.step(0) # required yellow time
t += 1
flag = (t >= num_step)
if flag:
break
if flag:
break
env.step(action)
last_action = action
t += 1
next_state = env.get_state()
reward = env.get_reward()
next_state = np.array(list(next_state['start_lane_vehicle_count'].values()) + [next_state['current_phase']])
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state)
state = next_state
total_time = t + e * num_step
if total_time > learning_start and total_time % update_model_freq == update_model_freq - 1:
agent.replay()
if total_time > learning_start and total_time % update_target_model_freq == update_target_model_freq -1:
agent.update_target_network()
print("episode: {}/{}, time: {}, acton: {}, reward: {}"
.format(e, EPISODES, t-1, action, reward))
if e % 10 == 0:
if not os.path.exists("model"):
os.makedirs("model")
agent.model.save("model/trafficLight-dqn-{}.h5".format(e))
# log environment files
env.log()