|
43 | 43 | Code
|
44 | 44 | tunable(spec %>% set_engine("glmnet", dfmax = tune()))
|
45 | 45 | Output
|
46 |
| - # A tibble: 3 x 5 |
| 46 | + # A tibble: 2 x 5 |
47 | 47 | name call_info source component component_id
|
48 | 48 | <chr> <list> <chr> <chr> <chr>
|
49 | 49 | 1 penalty <named list [2]> model_spec linear_reg main
|
50 | 50 | 2 mixture <named list [3]> model_spec linear_reg main
|
51 |
| - 3 dfmax <NULL> model_spec linear_reg engine |
52 | 51 |
|
53 | 52 | # tunable.logistic_reg()
|
54 | 53 |
|
|
95 | 94 | Code
|
96 | 95 | tunable(spec %>% set_engine("glmnet", dfmax = tune()))
|
97 | 96 | Output
|
98 |
| - # A tibble: 3 x 5 |
| 97 | + # A tibble: 2 x 5 |
99 | 98 | name call_info source component component_id
|
100 | 99 | <chr> <list> <chr> <chr> <chr>
|
101 | 100 | 1 penalty <named list [2]> model_spec logistic_reg main
|
102 | 101 | 2 mixture <named list [3]> model_spec logistic_reg main
|
103 |
| - 3 dfmax <NULL> model_spec logistic_reg engine |
104 | 102 |
|
105 | 103 | # tunable.multinom_reg()
|
106 | 104 |
|
|
244 | 242 | Code
|
245 | 243 | tunable(spec %>% set_engine("xgboost", feval = tune()))
|
246 | 244 | Output
|
247 |
| - # A tibble: 9 x 5 |
| 245 | + # A tibble: 8 x 5 |
248 | 246 | name call_info source component component_id
|
249 | 247 | <chr> <list> <chr> <chr> <chr>
|
250 | 248 | 1 tree_depth <named list [2]> model_spec boost_tree main
|
|
255 | 253 | 6 loss_reduction <named list [2]> model_spec boost_tree main
|
256 | 254 | 7 sample_size <named list [2]> model_spec boost_tree main
|
257 | 255 | 8 stop_iter <named list [2]> model_spec boost_tree main
|
258 |
| - 9 feval <NULL> model_spec boost_tree engine |
259 | 256 |
|
260 | 257 | # tunable.rand_forest()
|
261 | 258 |
|
|
310 | 307 | Code
|
311 | 308 | tunable(spec %>% set_engine("ranger", min.bucket = tune()))
|
312 | 309 | Output
|
313 |
| - # A tibble: 4 x 5 |
314 |
| - name call_info source component component_id |
315 |
| - <chr> <list> <chr> <chr> <chr> |
316 |
| - 1 mtry <named list [2]> model_spec rand_forest main |
317 |
| - 2 trees <named list [2]> model_spec rand_forest main |
318 |
| - 3 min_n <named list [2]> model_spec rand_forest main |
319 |
| - 4 min.bucket <NULL> model_spec rand_forest engine |
| 310 | + # A tibble: 3 x 5 |
| 311 | + name call_info source component component_id |
| 312 | + <chr> <list> <chr> <chr> <chr> |
| 313 | + 1 mtry <named list [2]> model_spec rand_forest main |
| 314 | + 2 trees <named list [2]> model_spec rand_forest main |
| 315 | + 3 min_n <named list [2]> model_spec rand_forest main |
320 | 316 |
|
321 | 317 | # tunable.mars()
|
322 | 318 |
|
|
347 | 343 | Code
|
348 | 344 | tunable(spec %>% set_engine("earth", minspan = tune()))
|
349 | 345 | Output
|
350 |
| - # A tibble: 4 x 5 |
| 346 | + # A tibble: 3 x 5 |
351 | 347 | name call_info source component component_id
|
352 | 348 | <chr> <list> <chr> <chr> <chr>
|
353 | 349 | 1 num_terms <named list [3]> model_spec mars main
|
354 | 350 | 2 prod_degree <named list [2]> model_spec mars main
|
355 | 351 | 3 prune_method <named list [2]> model_spec mars main
|
356 |
| - 4 minspan <NULL> model_spec mars engine |
357 | 352 |
|
358 | 353 | # tunable.decision_tree()
|
359 | 354 |
|
|
405 | 400 | Code
|
406 | 401 | tunable(spec %>% set_engine("rpart", parms = tune()))
|
407 | 402 | Output
|
408 |
| - # A tibble: 4 x 5 |
| 403 | + # A tibble: 3 x 5 |
409 | 404 | name call_info source component component_id
|
410 | 405 | <chr> <list> <chr> <chr> <chr>
|
411 | 406 | 1 tree_depth <named list [2]> model_spec decision_tree main
|
412 | 407 | 2 min_n <named list [2]> model_spec decision_tree main
|
413 | 408 | 3 cost_complexity <named list [2]> model_spec decision_tree main
|
414 |
| - 4 parms <NULL> model_spec decision_tree engine |
415 | 409 |
|
416 | 410 | # tunable.svm_poly()
|
417 | 411 |
|
|
444 | 438 | Code
|
445 | 439 | tunable(spec %>% set_engine("kernlab", tol = tune()))
|
446 | 440 | Output
|
447 |
| - # A tibble: 5 x 5 |
| 441 | + # A tibble: 4 x 5 |
448 | 442 | name call_info source component component_id
|
449 | 443 | <chr> <list> <chr> <chr> <chr>
|
450 | 444 | 1 cost <named list [3]> model_spec svm_poly main
|
451 | 445 | 2 degree <named list [3]> model_spec svm_poly main
|
452 | 446 | 3 scale_factor <named list [2]> model_spec svm_poly main
|
453 | 447 | 4 margin <named list [2]> model_spec svm_poly main
|
454 |
| - 5 tol <NULL> model_spec svm_poly engine |
455 | 448 |
|
456 | 449 | # tunable.mlp()
|
457 | 450 |
|
|
511 | 504 | Code
|
512 | 505 | tunable(spec %>% set_engine("keras", ragged = tune()))
|
513 | 506 | Output
|
514 |
| - # A tibble: 6 x 5 |
| 507 | + # A tibble: 5 x 5 |
515 | 508 | name call_info source component component_id
|
516 | 509 | <chr> <list> <chr> <chr> <chr>
|
517 | 510 | 1 hidden_units <named list [2]> model_spec mlp main
|
518 | 511 | 2 penalty <named list [2]> model_spec mlp main
|
519 | 512 | 3 dropout <named list [2]> model_spec mlp main
|
520 | 513 | 4 epochs <named list [2]> model_spec mlp main
|
521 | 514 | 5 activation <named list [2]> model_spec mlp main
|
522 |
| - 6 ragged <NULL> model_spec mlp engine |
523 | 515 |
|
524 | 516 | # tunable.survival_reg()
|
525 | 517 |
|
|
544 | 536 | Code
|
545 | 537 | tunable(spec %>% set_engine("survival", parms = tune()))
|
546 | 538 | Output
|
547 |
| - # A tibble: 1 x 5 |
548 |
| - name call_info source component component_id |
549 |
| - <chr> <list> <chr> <chr> <chr> |
550 |
| - 1 parms <NULL> model_spec survival_reg engine |
| 539 | + # A tibble: 0 x 5 |
| 540 | + # i 5 variables: name <chr>, call_info <list>, source <chr>, component <chr>, |
| 541 | + # component_id <chr> |
551 | 542 |
|
0 commit comments