@@ -14,14 +14,14 @@ isoforms that switch in terms of their expression after cells are
14
14
treated, one can use the
15
15
[ IsoformSwitchAnalyzeR] ( https://github.com/kvittingseerup/IsoformSwitchAnalyzeR )
16
16
Bioconductor package to visualize and analyze a set of isoform
17
- switches [ @Vitting-Seerup2019 ] .
18
- For example, one can test the functional consequences of a
19
- set of isoform switches in terms of the gain or loss of protein
20
- domains, or splicing-centric changes (e.g. alternative 3' or 5'
21
- acceptor sites, alternative transcription start or ends sites, etc.)
22
- * IsoformSwitchAnalyzeR * is a multi-feature and mature package for this
23
- type of analysis, but we can perform some simpler within-gene isoform
24
- comparisons using * plyranges * , mostly for demonstration.
17
+ switches [ @Vitting-Seerup2019 ] . For example, one can test the
18
+ functional consequences of a set of isoform switches in terms of the
19
+ gain or loss of protein domains, or splicing-centric changes (e.g.
20
+ alternative 3' or 5' acceptor sites, alternative transcription start
21
+ or ends sites, etc.) * IsoformSwitchAnalyzeR * is a multi-feature and
22
+ mature package for this type of analysis, but we can perform some
23
+ simpler within-gene isoform comparisons using * plyranges * , mostly for
24
+ demonstration.
25
25
26
26
Here we will suppose that we have somehow identified isoforms of
27
27
interest, and we want to compare these isoforms to other isoforms of
@@ -88,68 +88,15 @@ multi-isoform genes:
88
88
89
89
90
90
``` r
91
- library(tibble )
92
- tab <- txp %> %
93
- group_by(gene_id ) %> %
94
- summarize(ntxp = n_distinct(tx_id )) %> %
95
- as_tibble()
96
- tab
97
- ```
91
+ # this is slow for some reason...
92
+ # # txp %>%
93
+ # # group_by(gene_id) %>%
94
+ # # mutate(ntxp = n()) %>%
95
+ # # ungroup()
98
96
99
- ```
100
- ## # A tibble: 2,324 × 2
101
- ## gene_id ntxp
102
- ## <chr> <int>
103
- ## 1 10000 3
104
- ## 2 100126331 1
105
- ## 3 100126346 1
106
- ## 4 100126348 1
107
- ## 5 100126349 1
108
- ## 6 100128071 1
109
- ## 7 100128787 1
110
- ## 8 100129046 1
111
- ## 9 100129138 1
112
- ## 10 100129196 1
113
- ## # ℹ 2,314 more rows
114
- ```
115
-
116
- ``` r
117
- tab_longer <- dplyr :: left_join(tibble(gene_id = txp $ gene_id ), tab )
97
+ # this is faster...
118
98
txp <- txp %> %
119
- mutate(ntxp = tab_longer $ ntxp )
120
- txp
121
- ```
122
-
123
- ```
124
- ## GRanges object with 7177 ranges and 5 metadata columns:
125
- ## seqnames ranges strand | tx_id tx_name gene_id symbol
126
- ## <Rle> <IRanges> <Rle> | <character> <character> <character> <character>
127
- ## [1] chr1 11874-14409 + | 1 uc001aaa.3 100287102 DDX11L1
128
- ## [2] chr1 11874-14409 + | 2 uc010nxq.1 100287102 DDX11L1
129
- ## [3] chr1 11874-14409 + | 3 uc010nxr.1 100287102 DDX11L1
130
- ## [4] chr1 69091-70008 + | 4 uc001aal.1 79501 OR4F5
131
- ## [5] chr1 323892-328581 + | 8 uc001aau.3 100132062 LOC100132062
132
- ## ... ... ... ... . ... ... ... ...
133
- ## [7173] chr1 249144203-249152264 - | 7963 uc031pta.1 55657 ZNF692
134
- ## [7174] chr1 249144203-249152912 - | 7964 uc001ifb.2 55657 ZNF692
135
- ## [7175] chr1 249144203-249153125 - | 7965 uc010pzr.2 55657 ZNF692
136
- ## [7176] chr1 249144203-249153315 - | 7966 uc001ifc.2 55657 ZNF692
137
- ## [7177] chr1 249144203-249153315 - | 7967 uc001iff.2 55657 ZNF692
138
- ## ntxp
139
- ## <integer>
140
- ## [1] 3
141
- ## [2] 3
142
- ## [3] 3
143
- ## [4] 1
144
- ## [5] 1
145
- ## ... ...
146
- ## [7173] 6
147
- ## [7174] 6
148
- ## [7175] 6
149
- ## [7176] 6
150
- ## [7177] 6
151
- ## -------
152
- ## seqinfo: 93 sequences (1 circular) from hg19 genome
99
+ mutate(ntxp = as.integer(table(txp $ gene_id )[ gene_id ]))
153
100
```
154
101
155
102
We can now filter to the multi-isoform genes:
@@ -165,6 +112,7 @@ those in a tibble...
165
112
166
113
167
114
``` r
115
+ library(tibble )
168
116
set.seed(3 )
169
117
pick_one <- txp %> %
170
118
as_tibble() %> %
0 commit comments