-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_open_world.py
475 lines (413 loc) · 23.3 KB
/
main_open_world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# ------------------------------------------------------------------------
# PROB: Probabilistic Objectness for Open World Object Detection
# Orr Zohar, Jackson Wang, Serena Yeung
# -----------------------------------------------------------------------
# Modified from OW-DETR: Open-world Detection Transformer
# Akshita Gupta^, Sanath Narayan^, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah
# https://arxiv.org/pdf/2112.01513.pdf
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
import datasets
import util.misc as utils
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco import make_coco_transforms
from datasets.torchvision_datasets.open_world import OWDetection
from engine import evaluate, train_one_epoch, get_exemplar_replay
from models import build_model
import wandb
def get_args_parser():
parser = argparse.ArgumentParser('Deformable DETR Detector', add_help=False)
################ Deformable DETR ################
parser.add_argument('--lr', default=2e-4, type=float)
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
parser.add_argument('--lr_backbone', default=2e-5, type=float)
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--batch_size', default=5, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=51, type=int)
parser.add_argument('--lr_drop', default=35, type=int)
parser.add_argument('--lr_drop_epochs', default=None, type=int, nargs='+')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--sgd', action='store_true')
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true')
parser.add_argument('--masks', default=False, action='store_true', help="Train segmentation head if the flag is provided")
parser.add_argument('--backbone', default='dino_resnet50', type=str, help="Name of the convolutional backbone to use")
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# Loss coefficients
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--viz', action='store_true')
parser.add_argument('--eval_every', default=5, type=int)
parser.add_argument('--num_workers', default=3, type=int)
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
################ OW-DETR ################
parser.add_argument('--PREV_INTRODUCED_CLS', default=0, type=int)
parser.add_argument('--CUR_INTRODUCED_CLS', default=20, type=int)
parser.add_argument('--unmatched_boxes', default=False, action='store_true')
parser.add_argument('--top_unk', default=5, type=int)
parser.add_argument('--featdim', default=1024, type=int)
parser.add_argument('--invalid_cls_logits', default=False, action='store_true', help='owod setting')
parser.add_argument('--NC_branch', default=False, action='store_true')
parser.add_argument('--bbox_thresh', default=0.3, type=float)
parser.add_argument('--pretrain', default='', help='initialized from the pre-training model')
parser.add_argument('--nc_loss_coef', default=2, type=float)
parser.add_argument('--train_set', default='', help='training txt files')
parser.add_argument('--test_set', default='', help='testing txt files')
parser.add_argument('--num_classes', default=81, type=int)
parser.add_argument('--nc_epoch', default=0, type=int)
parser.add_argument('--dataset', default='OWDETR', help='defines which dataset is used. Built for: {TOWOD, OWDETR, VOC2007}')
parser.add_argument('--data_root', default='./data/OWOD', type=str)
parser.add_argument('--unk_conf_w', default=1.0, type=float)
################ PROB OWOD ################
# model config
parser.add_argument('--model_type', default='prob', type=str)
# logging
parser.add_argument('--wandb_name', default='', type=str)
parser.add_argument('--wandb_project', default='PROB_OWOD', type=str)
# model hyperparameters
parser.add_argument('--obj_loss_coef', default=1, type=float)
parser.add_argument('--obj_temp', default=1, type=float)
parser.add_argument('--freeze_prob_model', default=False, action='store_true', help='freeze model probabistic estimation')
# Exemplar replay selection
parser.add_argument('--num_inst_per_class', default=50, type=int, help="number of instances per class")
parser.add_argument('--exemplar_replay_selection', default=False, action='store_true', help='use learned exemplar selection')
parser.add_argument('--exemplar_replay_max_length', default=1e10, type=int, help="max number of images that can be saves")
parser.add_argument('--exemplar_replay_dir', default='', type=str, help="directory of exemplar replay txt files")
parser.add_argument('--exemplar_replay_prev_file', default='', type=str, help="path to previous ft file")
parser.add_argument('--exemplar_replay_cur_file', default='', type=str, help="path to current ft file")
parser.add_argument('--exemplar_replay_random', default=False, action='store_true', help='make selection random')
return parser
def main(args):
if len(args.wandb_project)>0:
if len(args.wandb_name)>0:
wandb.init(project=args.wandb_project, entity="marvl", group=args.wandb_name)
else:
wandb.init(project=args.wandb_project, entity="marvl")
wandb.config = args
#else:
# wandb=None
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors, exemplar_selection = build_model(args, mode = args.model_type)
model.to(device)
model_without_ddp = model
print(model_without_ddp)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
dataset_train, dataset_val = get_datasets(args)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
# lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
if args.sgd:
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.dataset == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
elif args.dataset == "coco":
base_ds = get_coco_api_from_dataset(dataset_val)
else:
base_ds = dataset_val
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.pretrain:
print('Initialized from the pre-training model')
checkpoint = torch.load(args.pretrain, map_location='cpu')
state_dict = checkpoint['model']
msg = model_without_ddp.load_state_dict(state_dict, strict=False)
print(msg)
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args)
return
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance).
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
# check the resumed model
if (not args.eval and not args.viz and args.dataset in ['coco', 'voc']):
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args
)
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
if args.freeze_prob_model:
if isinstance(model_without_ddp.prob_obj_head, torch.nn.ModuleList):
for obj_head in model_without_ddp.prob_obj_head:
obj_head.freeze_prob_model()
else:
model_without_ddp.prob_obj_head.freeze_prob_model()
obj_bn_mean_before=model_without_ddp.prob_obj_head[0].objectness_bn.running_mean
print(f'Start training from epoch {args.start_epoch} to {args.epochs}')
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.nc_epoch, args.clip_max_norm, wandb)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 5 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch % args.eval_every == 0 or epoch == 0 or epoch == 1 or (args.epochs-epoch)<1):
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args)
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
if wandb is not None:
test_stats["metrics"]['epoch']=epoch
wandb.log({str(key): val for key, val in test_stats["metrics"].items()})
elif epoch > args.epochs-6:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
else:
test_stats = {}
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if args.dataset in ['owod', 'owdetr'] and epoch % args.eval_every == 0 and epoch > 0:
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
if args.exemplar_replay_selection:
image_sorted_scores = get_exemplar_replay(model,exemplar_selection, device, data_loader_train)
create_ft_dataset(args, image_sorted_scores)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
return
def get_datasets(args):
print(args.dataset)
train_set = args.train_set
test_set = args.test_set
dataset_train = OWDetection(args, args.data_root, image_set=args.train_set, transforms=make_coco_transforms(args.train_set), dataset = args.dataset)
dataset_val = OWDetection(args, args.data_root, image_set=args.test_set, dataset = args.dataset, transforms=make_coco_transforms(args.test_set))
print(args.train_set)
print(args.test_set)
print(dataset_train)
print(dataset_val)
return dataset_train, dataset_val
def create_ft_dataset(args, image_sorted_scores):
print(f'found a total of {len(image_sorted_scores.keys())} images')
tmp_dir=args.data_root +'/ImageSets/'+args.dataset+"/"+args.exemplar_replay_dir+"/"
#tmp_dir=args.data_root +'/ImageSets/'+args.exemplar_replay_dir+"/"
class_sorted_scores={}
imgs_per_class={}
for i in range(args.PREV_INTRODUCED_CLS, args.CUR_INTRODUCED_CLS+args.PREV_INTRODUCED_CLS):
class_sorted_scores[str(i)]=[]
imgs_per_class[str(i)]=[]
for k,v in image_sorted_scores.items():
for j in range(len(v['labels'])):
class_sorted_scores[str(v['labels'][j])].append(v['scores'][j])
class_threshold={}
for i in range(args.PREV_INTRODUCED_CLS, args.CUR_INTRODUCED_CLS+args.PREV_INTRODUCED_CLS):
tmp=np.array(class_sorted_scores[str(i)])
tmp.sort()
tmp = torch.Tensor(tmp)
if len(tmp)>args.num_inst_per_class and not args.exemplar_replay_random:
max_val = tmp[-args.num_inst_per_class//2]
min_val = tmp[args.num_inst_per_class//2]
else:
if args.exemplar_replay_random:
print('using random exemplar selection')
else:
print(f'only found {len(tmp)} imgs in class {i}')
max_val = tmp.min()
min_val = tmp.max()
class_threshold[str(i)]=(min_val, max_val)
save_imgs = []
for k,v in image_sorted_scores.items():
for j in range(len(v['labels'])):
label = str(v['labels'][j])
if (v['scores'][j] <= class_threshold[label][0].numpy() or v['scores'][j] >= class_threshold[label][1].numpy()) and (len(imgs_per_class[label])<=args.num_inst_per_class+2):
save_imgs.append(k)
imgs_per_class[label].append(k)
print(f'found {len(np.unique(save_imgs))} images in run')
if len(args.exemplar_replay_prev_file)>0:
previous_ft = open(tmp_dir+args.exemplar_replay_prev_file,'r').read().splitlines()
save_imgs+=previous_ft
save_imgs=np.unique(save_imgs)
np.random.shuffle(save_imgs)
if len(save_imgs)> args.exemplar_replay_max_length:
save_imgs=save_imgs[:args.exemplar_replay_max_length]
os.makedirs(tmp_dir, exist_ok=True)
with open(tmp_dir+args.exemplar_replay_cur_file, 'w') as f:
for line in save_imgs:
f.write(line)
f.write('\n')
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('Deformable DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)