forked from THUDM/VisualGLM-6B
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_visualglm.py
195 lines (167 loc) · 8.18 KB
/
finetune_visualglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import torch
import argparse
from sat import mpu, get_args, get_tokenizer
from sat.training.deepspeed_training import training_main
from model import VisualGLMModel
from sat.model.finetune import PTuningV2Mixin
from lora_mixin import LoraMixin
class FineTuneVisualGLMModel(VisualGLMModel):
def __init__(self, args, transformer=None, parallel_output=True, **kw_args):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, **kw_args)
if args.use_ptuning:
self.add_mixin("ptuning", PTuningV2Mixin(args.num_layers, args.hidden_size // args.num_attention_heads, args.num_attention_heads, args.pre_seq_len))
if args.use_lora:
# If you use lora on other "normal" Transformer, just use it with head_first=False (by default)
self.add_mixin("lora", LoraMixin(args.num_layers, args.lora_rank, head_first=True, num_attention_heads=args.num_attention_heads, hidden_size_per_attention_head=args.hidden_size // args.num_attention_heads, layer_range=args.layer_range), reinit=True)
# self.get_mixin("eva").model.glm_proj = replace_linear_with_lora(self.get_mixin("eva").model.glm_proj, LoraLinear, args.lora_rank)
elif args.use_qlora:
self.add_mixin("lora", LoraMixin(args.num_layers, args.lora_rank, head_first=True, num_attention_heads=args.num_attention_heads, hidden_size_per_attention_head=args.hidden_size // args.num_attention_heads, layer_range=args.layer_range, qlora=True), reinit=True)
self.args = args
@classmethod
def add_model_specific_args(cls, parser):
group = parser.add_argument_group('VisualGLM-finetune', 'VisualGLM finetune Configurations')
group.add_argument('--pre_seq_len', type=int, default=8)
group.add_argument('--lora_rank', type=int, default=10)
group.add_argument('--use_ptuning', action="store_true")
group.add_argument('--use_lora', action="store_true")
group.add_argument('--use_qlora', action="store_true")
group.add_argument('--layer_range', nargs='+', type=int, default=None)
return super().add_model_specific_args(parser)
def disable_untrainable_params(self):
enable = []
if self.args.use_ptuning:
enable.extend(['ptuning'])
if self.args.use_lora or self.args.use_qlora:
enable.extend(['matrix_A', 'matrix_B'])
for n, p in self.named_parameters():
flag = False
for e in enable:
if e.lower() in n.lower():
flag = True
break
if not flag:
p.requires_grad_(False)
else:
print(n)
def get_batch(data_iterator, args, timers):
# Items and their type.
keys = ['input_ids', 'labels']
datatype = torch.int64
# Broadcast data.
timers('data loader').start()
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
timers('data loader').stop()
data_b = mpu.broadcast_data(keys, data, datatype)
data_i = mpu.broadcast_data(['image'], data, torch.float32)
# Unpack.
tokens = data_b['input_ids'].long()
labels = data_b['labels'].long()
img = data_i['image']
if args.fp16:
img = img.half()
return tokens, labels, img, data['pre_image']
from torch.nn import CrossEntropyLoss
def forward_step(data_iterator, model, args, timers):
"""Forward step."""
# Get the batch.
timers('batch generator').start()
tokens, labels, image, pre_image = get_batch(
data_iterator, args, timers)
timers('batch generator').stop()
logits = model(input_ids=tokens, image=image, pre_image=pre_image)[0]
dtype = logits.dtype
lm_logits = logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(dtype)
loss = loss.to(dtype)
return loss, {'loss': loss}
from model.blip2 import BlipImageEvalProcessor
from torch.utils.data import Dataset
import json
from PIL import Image
class FewShotDataset(Dataset):
def __init__(self, path, processor, tokenizer, args):
max_seq_length = args.max_source_length + args.max_target_length
with open(path, 'r', encoding='utf-8') as f:
data = json.load(f)
self.images = []
self.input_ids = []
self.labels = []
for item in data:
image = processor(Image.open(item['img']).convert('RGB'))
input0 = tokenizer.encode("<img>", add_special_tokens=False)
input1 = [tokenizer.pad_token_id] * args.image_length
input2 = tokenizer.encode("</img>问:"+item['prompt']+"\n答:", add_special_tokens=False)
a_ids = sum([input0, input1, input2], [])
b_ids = tokenizer.encode(text=item['label'], add_special_tokens=False)
if len(a_ids) > args.max_source_length - 1:
a_ids = a_ids[: args.max_source_length - 1]
if len(b_ids) > args.max_target_length - 2:
b_ids = b_ids[: args.max_target_length - 2]
pre_image = len(input0)
input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)
context_length = input_ids.index(tokenizer.bos_token_id)
mask_position = context_length - 1
labels = [-100] * context_length + input_ids[mask_position+1:]
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
labels = labels + [tokenizer.pad_token_id] * pad_len
if args.ignore_pad_token_for_loss:
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
self.images.append(image)
self.input_ids.append(input_ids)
self.labels.append(labels)
self.pre_image = pre_image
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return {
"image": self.images[idx],
"input_ids": self.input_ids[idx],
"labels": self.labels[idx],
"pre_image": self.pre_image
}
def create_dataset_function(path, args):
tokenizer = get_tokenizer(args)
image_processor = BlipImageEvalProcessor(224)
dataset = FewShotDataset(path, image_processor, tokenizer, args)
return dataset
if __name__ == '__main__':
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--max_source_length', type=int)
py_parser.add_argument('--max_target_length', type=int)
py_parser.add_argument('--ignore_pad_token_for_loss', type=bool, default=True)
# py_parser.add_argument('--old_checkpoint', action="store_true")
py_parser.add_argument('--source_prefix', type=str, default="")
py_parser = FineTuneVisualGLMModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.device = 'cpu'
model_type = 'visualglm-6b'
model, args = FineTuneVisualGLMModel.from_pretrained(model_type, args)
if torch.cuda.is_available():
model = model.to('cuda')
tokenizer = get_tokenizer(args)
label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
def data_collator(examples):
for example in examples:
example['input_ids'] = torch.tensor(example['input_ids'], dtype=torch.long)
example['labels'] = torch.tensor(example['labels'], dtype=torch.long)
ret = {
'input_ids': torch.stack([example['input_ids'] for example in examples]),
'labels': torch.stack([example['labels'] for example in examples]),
'image': torch.stack([example['image'] for example in examples]),
'pre_image': example['pre_image']
}
return ret
training_main(args, model_cls=model, forward_step_function=forward_step, create_dataset_function=create_dataset_function, collate_fn=data_collator)