-
Notifications
You must be signed in to change notification settings - Fork 1
/
integral_test7.sage
executable file
·92 lines (83 loc) · 3.68 KB
/
integral_test7.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env sage
##########################################################################
# Copyright (C) 2008 Tim Lahey <[email protected]>
#
# Distributed under the terms of the BSD License:
#
# http://www.opensource.org/licenses/bsd-license.php
##########################################################################
# The source of the integrals for comparison are from:
# Spiegel, Murray R.
# Mathematical Handbook of Formulas and Tables
# Schaum's Outline Series McGraw-Hill 1968
# 14.144-14.162
# Original Inspiration for this from:
# http://axiom-developer.org/axiom-website/CATS/
#
# Thanks to Tim Daly.
# Define the necessary variables
var('x,a,b,n,m,p,q')
# Define the table of integral tests. Format is test #, [integrand,desired result]
int_table = { 'Schaum 14.144' : [1/(x^2-a^2),1/(2*a)*log((x-a)/(x+a))],
'Schaum 14.145' : [x/(x^2-a^2),1/2*log(x^2-a^2)],
'Schaum 14.146' : [x^2/(x^2-a^2),x+a/2*log((x-a)/(x+a))],
'Schaum 14.147' : [x^3/(x^2-a^2),x^2/2+a^2/2*log(x^2-a^2)],
'Schaum 14.148' : [1/(x*(x^2-a^2)),1/(2*a^2)*log((x^2-a^2)/x^2)],
'Schaum 14.149' : [1/(x^2*(x^2-a^2)),1/(a^2*x)+1/(2*a^3)*log((x-a)/(x+a))],
'Schaum 14.150' : [1/(x^3*(x^2-a^2)),1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2-a^2))],
'Schaum 14.151' : [1/((x^2-a^2)^2),-x/(2*a^2*(x^2-a^2))-1/(4*a^3)*log((x-a)/(x+a))],
'Schaum 14.152' : [x/((x^2-a^2)^2),-1/(2*(x^2-a^2))],
'Schaum 14.153' : [x^2/((x^2-a^2)^2),-x/(2*(x^2-a^2))+1/(4*a)*log((x-a)/(x+a))],
'Schaum 14.154' : [x^3/((x^2-a^2)^2),-a^2/(2*(x^2-a^2))+1/2*log(x^2-a^2)],
'Schaum 14.155' : [1/(x*(x^2-a^2)^2),-1/(2*a^2*(x^2-a^2))+1/(2*a^4)*log(x^2/(x^2-a^2))],
'Schaum 14.156' : [1/(x^2*(x^2-a^2)^2),-1/(a^4*x)-x/(2*a^4*(x^2-a^2))-3/(4*a^5)*log((x-a)/(x+a))],
'Schaum 14.157' : [1/(x^3*(x^2-a^2)^2),-1/(2*a^4*x^2)-1/(2*a^4*(x^2-a^2))+1/a^6*log(x^2/(x^2-a^2))],
'Schaum 14.158' : [1/((x^2-a^2)^n),0],
'Schaum 14.159' : [x/((x^2-a^2)^n),-1/(2*(n-1)*(x^2-a^2)^(n-1))],
'Schaum 14.160' : [1/(x*(x^2-a^2)^n),0],
'Schaum 14.161' : [x^m/((x^2-a^2)^n),0],
'Schaum 14.162' : [1/(x^m*(x^2-a^2)^n),0]
}
# Check to see if test passed and print result.
def test_eval(test, test_int, desired_result):
try:
test_cmp = (desired_result.simplify_full()-test_int.simplify_full()).simplify_full()
except:
print "Test", test,": Test failed. Unable to compare results."
print "Calculated Integral: ", test_int
return
if (test_cmp == 0):
print "Test", test,": Test Passed."
else:
print "Test", test," Difference in Results:", test_cmp
# If the difference is constant, the result is valid within a constant of integration.
if (test_cmp.diff(x) == 0):
print "Correct within a constant of integration."
print "Test Passed."
else:
div_cmp = (desired_result.simplify_full()/test_int.simplify_full()).simplify_full()
if (div_cmp.diff(x) == 0):
print "Division of Results:", div_cmp
print "Correct within a constant multiple."
else:
print "Test Failed."
print "Calculated Integral: ", test_int
print "Comparison Integral: ", desired_result
# Time integration of Maxima and FriCAS for integral.
def time_Maxima_friCAS(integrand):
mx_time = timeit.eval('integrand.integrate(x)')
fCAS_time= timeit.eval('axiom.integrate(integrand,x)')
print "Maxima Time:", mx_time.stats[3], mx_time.stats[4]
print "FriCAS Time:", fCAS_time.stats[3], fCAS_time.stats[4]
# Loop over tests
for test in int_table.keys():
test_set = int_table[test]
integrand = test_set[0]
desired_result = test_set[1]
try:
test_int = integrand.integrate(x)
except:
print "Test", test,": Test failed due to exception."
else:
test_eval(test,test_int,desired_result)
time_Maxima_friCAS(integrand)