-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimageprocessor.cpp
305 lines (242 loc) · 9.19 KB
/
imageprocessor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
Copyright (C) 2015 LAM Tak-Kei
This file is part of See.
See is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
See is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
See. If not, see <http://www.gnu.org/licenses/>.
*/
#include "imageprocessor.h"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <sstream>
#include <deque>
using namespace cv;
using namespace std;
void ImageProcessor::capValueTo255(float raw, unsigned char & value)
{
if(raw > (unsigned char)255) {
value = 255;
}
else {
value = raw;
}
}
QString ImageProcessor::formatRgb(float r, float g, float b)
{
QString rgb;
rgb.sprintf("(%.1f, %.1f, %.1f)", r, g, b);
return rgb;
}
static void RemoveExcessAtBack(
deque<RgbSumPixels*> & topRgbSums,
size_t & effectivePixelCount,
const size_t maxCount
)
{
while(topRgbSums.empty() == false &&
effectivePixelCount > maxCount) {
RgbSumPixels * rgbSumPixels = *topRgbSums.rbegin();
while(rgbSumPixels->getPixelsCount() > 0 &&
effectivePixelCount > maxCount) {
rgbSumPixels->removeAtBack();
--effectivePixelCount;
}
if(rgbSumPixels->getPixelsCount() == 0) {
delete rgbSumPixels;
topRgbSums.pop_back();
}
}
}
static size_t FindJustSmallerOrEqualTo(
deque<RgbSumPixels*> const & topRgbSums,
size_t rgbSum)
{
size_t beginIndex = 0;
size_t endIndexPlusOne = topRgbSums.size();
while(beginIndex != endIndexPlusOne) {
int midIndex = (beginIndex + endIndexPlusOne) / 2;
if(topRgbSums[midIndex]->rgbSum > rgbSum) { //[midIndex+1, endIndexPlusOne)
beginIndex = midIndex + 1;
}
else { //[beginIndex, midIndex)
endIndexPlusOne = midIndex;
}
}
return beginIndex;
}
void ImageProcessor::calcAverageForTopPercentageBrightestColour(
Mat image, const size_t rows, const size_t cols, const size_t maxCount, const uchar lowestColourValue,
float & average_r, float & average_g, float & average_b)
{
deque<RgbSumPixels*> topRgbSums;
size_t effectivePixelCount = 0;
for(size_t r = 0; r < rows; ++r) {
for(size_t c = 0; c < cols; ++c) {
RGB& rgb = image.ptr<RGB>(r)[c];
// assume the value for each channel must be greater than whiteThreshold for it to be white
if(rgb.blue < lowestColourValue &&
rgb.green < lowestColourValue &&
rgb.red < lowestColourValue) {
continue;
}
size_t rgbSum = rgb.blue + rgb.green + rgb.red;
// add the pixel to the list sorted in the decreasing order of rgb sum
size_t insertIndex = FindJustSmallerOrEqualTo(topRgbSums, rgbSum);
//qDebug() << "rgbSum: " << rgbSum << " topRgbSums.size(): " << topRgbSums.size() << " insertIndex: " << insertIndex;
if(insertIndex == topRgbSums.size()) {
RgbSumPixels * rgbSumPixels = new RgbSumPixels();
rgbSumPixels->rgbSum = rgbSum;
rgbSumPixels->addPixel(&rgb);
topRgbSums.push_back(rgbSumPixels);
}
else {
RgbSumPixels * toCompare = topRgbSums[insertIndex];
if(rgbSum == toCompare->rgbSum) {
toCompare->addPixel(&rgb);
}
else {
RgbSumPixels * rgbSumPixels = new RgbSumPixels();
rgbSumPixels->rgbSum = rgbSum;
rgbSumPixels->addPixel(&rgb);
topRgbSums.insert(topRgbSums.begin() + insertIndex, rgbSumPixels);
}
}
++effectivePixelCount;
// remove excess pixels
if(effectivePixelCount <= maxCount) {
continue;
}
//else
RemoveExcessAtBack(
topRgbSums,
effectivePixelCount,
maxCount
);
}
}
qDebug() << "maxCount: " << maxCount;
qDebug() << "topRgbSums.size(): " << topRgbSums.size();
if(topRgbSums.size() == 0) {
return;
}
average_r = 0;
average_g = 0;
average_b = 0;
for(deque<RgbSumPixels*>::const_iterator it = topRgbSums.cbegin(); it != topRgbSums.cend(); ++it) {
RgbSumPixels * rgbSumPixels = *it;
//qDebug() << rgbSumPixels->rgbSum;
const list<RGB*> & pixels = rgbSumPixels->getPixels();
for(list<RGB*>::const_iterator p_it = pixels.cbegin(); p_it != pixels.cend(); ++p_it) {
const RGB * rgb = *p_it;
average_r += rgb->red;
average_g += rgb->green;
average_b += rgb->blue;
}
delete rgbSumPixels;
}
average_r = average_r / effectivePixelCount;
average_g = average_g / effectivePixelCount;
average_b = average_b / effectivePixelCount;
}
ImageProcessor::ImageProcessor(QObject *parent) :
QObject(parent),
whiteGain_r(1),
whiteGain_g(1),
whiteGain_b(1)
{
}
ImageProcessor::~ImageProcessor()
{
}
void ImageProcessor::calibrateWhite(QString imagePath)
{
Mat rawImage;
rawImage = imread(imagePath.toStdString(), CV_LOAD_IMAGE_COLOR); // Read the file
size_t gridRow = rawImage.rows / 21;
size_t gridCol = rawImage.cols / 21;
size_t roiWidth = gridRow * 1;
size_t roiHeight = gridCol * 1;
qDebug() << "gridRow: " << gridRow << " " << "gridCol: " << gridCol;
Mat image = rawImage(Rect((rawImage.cols - roiWidth) / 2,
(rawImage.rows - roiHeight) / 2,
roiWidth, roiHeight));
// Noise reduction
GaussianBlur(image, image, Size(3, 3), 0, 0);
size_t rows = image.rows;
size_t cols = image.cols;
const uchar whiteThreshold = 32;
average_r = 255;
average_g = 255;
average_b = 255;
size_t effectivePixelCount = 0;
const float effectivePercentage = 0.05f;
effectivePixelCount = rows * cols * effectivePercentage;
calcAverageForTopPercentageBrightestColour(image, rows, cols, effectivePixelCount, whiteThreshold,
average_r, average_g, average_b);
whiteGain_b = 255.0f / average_b;
whiteGain_g = 255.0f / average_g;
whiteGain_r = 255.0f / average_r;
qDebug() << "average white (RGB): " << average_r << " " << average_g << " " << average_b;
qDebug() << "white gain (RGB): " << whiteGain_r << " " << whiteGain_g << " " << whiteGain_b;
processingResult = "white: " +
formatRgb(average_r, average_g, average_b) +
formatRgb(whiteGain_r, whiteGain_g, whiteGain_b);
//emit finishedCalibrateWhite();
}
void ImageProcessor::detectColour(QString imagePath)
{
Mat rawImage;
rawImage = imread(imagePath.toStdString(), CV_LOAD_IMAGE_COLOR); // Read the file
size_t gridRow = rawImage.rows / 21;
size_t gridCol = rawImage.cols / 21;
size_t roiWidth = gridRow * 1;
size_t roiHeight = gridCol * 1;
//qDebug() << "gridRow: " << gridRow << " " << "gridCol: " << gridCol;
Mat image = rawImage(Rect((rawImage.cols - roiWidth) / 2,
(rawImage.rows - roiHeight) / 2,
roiWidth, roiHeight));
// Noise reduction
GaussianBlur(image, image, Size(3, 3), 0, 0);
size_t rows = image.rows;
size_t cols = image.cols;
average_b = 0;
average_g = 0;
average_r = 0;
size_t effectivePixelCount = 0;
const float effectivePercentage = 1.0f;
effectivePixelCount = rows * cols;
// apply the 'white gain' for each channel
for(size_t r = 0; r < rows; ++r) {
for(size_t c = 0; c < cols; ++c) {
RGB& rgb = image.ptr<RGB>(r)[c];
average_r += rgb.red;
average_g += rgb.green;
average_b += rgb.blue;
capValueTo255(rgb.blue * whiteGain_b, rgb.blue);
capValueTo255(rgb.green * whiteGain_g, rgb.green);
capValueTo255(rgb.red * whiteGain_r, rgb.red);
}
}
average_r = average_r / effectivePixelCount;
average_g = average_g / effectivePixelCount;
average_b = average_b / effectivePixelCount;
QString rawRgbString = formatRgb(average_r, average_g, average_b);
effectivePixelCount = rows * cols * effectivePercentage;
calcAverageForTopPercentageBrightestColour(image, rows, cols, effectivePixelCount, 0,
average_r, average_g, average_b);
qDebug() << "colour effectivePixelCount: " << effectivePixelCount;
processingResult = rawRgbString + " -> " + formatRgb(average_r, average_g, average_b);
qDebug() << "average colour (RGB): " << processingResult;
//emit finishedDetectColour();
}
void ImageProcessor::getAnalysedRgbValue(RGB & rgb) const
{
rgb.red = average_r;
rgb.green = average_g;
rgb.blue = average_b;
}