diff --git a/.babelrc b/.babelrc
index 002b4aa0..d787d762 100644
--- a/.babelrc
+++ b/.babelrc
@@ -1,3 +1,13 @@
{
- "presets": ["env"]
+ "env": {
+ "development": {
+ "presets": ["env"]
+ },
+ "production": {
+ "presets": ["env"]
+ },
+ "esm": {
+ "presets": [["env", { "modules": false }]]
+ }
+ }
}
diff --git a/.travis.yml b/.travis.yml
index 7ea9c7bb..e699a1b6 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -3,6 +3,7 @@ sudo: false
node_js:
- "7.0.0"
script:
- - webpack --config utils/webpack.config.js
- - webpack --config utils/webpack.config.min.js
+ - npm run build
+ - npm run build-min
+ - npm run build-esm
- mocha --compilers js:babel-register --recursive spec
diff --git a/lib/gl-matrix.js b/lib/gl-matrix.js
new file mode 100644
index 00000000..ee4d8b5e
--- /dev/null
+++ b/lib/gl-matrix.js
@@ -0,0 +1,12 @@
+import * as glMatrix from "./gl-matrix/common.js";
+import * as mat2 from "./gl-matrix/mat2.js";
+import * as mat2d from "./gl-matrix/mat2d.js";
+import * as mat3 from "./gl-matrix/mat3.js";
+import * as mat4 from "./gl-matrix/mat4.js";
+import * as quat from "./gl-matrix/quat.js";
+import * as quat2 from "./gl-matrix/quat2.js";
+import * as vec2 from "./gl-matrix/vec2.js";
+import * as vec3 from "./gl-matrix/vec3.js";
+import * as vec4 from "./gl-matrix/vec4.js";
+
+export { glMatrix, mat2, mat2d, mat3, mat4, quat, quat2, vec2, vec3, vec4 };
\ No newline at end of file
diff --git a/lib/gl-matrix/common.js b/lib/gl-matrix/common.js
new file mode 100644
index 00000000..4adb6810
--- /dev/null
+++ b/lib/gl-matrix/common.js
@@ -0,0 +1,42 @@
+/**
+ * Common utilities
+ * @module glMatrix
+ */
+
+// Configuration Constants
+export var EPSILON = 0.000001;
+export var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;
+export var RANDOM = Math.random;
+
+/**
+ * Sets the type of array used when creating new vectors and matrices
+ *
+ * @param {Type} type Array type, such as Float32Array or Array
+ */
+export function setMatrixArrayType(type) {
+ ARRAY_TYPE = type;
+}
+
+var degree = Math.PI / 180;
+
+/**
+ * Convert Degree To Radian
+ *
+ * @param {Number} a Angle in Degrees
+ */
+export function toRadian(a) {
+ return a * degree;
+}
+
+/**
+ * Tests whether or not the arguments have approximately the same value, within an absolute
+ * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less
+ * than or equal to 1.0, and a relative tolerance is used for larger values)
+ *
+ * @param {Number} a The first number to test.
+ * @param {Number} b The second number to test.
+ * @returns {Boolean} True if the numbers are approximately equal, false otherwise.
+ */
+export function equals(a, b) {
+ return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
+}
\ No newline at end of file
diff --git a/lib/gl-matrix/mat2.js b/lib/gl-matrix/mat2.js
new file mode 100644
index 00000000..1b365a80
--- /dev/null
+++ b/lib/gl-matrix/mat2.js
@@ -0,0 +1,434 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 2x2 Matrix
+ * @module mat2
+ */
+
+/**
+ * Creates a new identity mat2
+ *
+ * @returns {mat2} a new 2x2 matrix
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[1] = 0;
+ out[2] = 0;
+ }
+ out[0] = 1;
+ out[3] = 1;
+ return out;
+}
+
+/**
+ * Creates a new mat2 initialized with values from an existing matrix
+ *
+ * @param {mat2} a matrix to clone
+ * @returns {mat2} a new 2x2 matrix
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Copy the values from one mat2 to another
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the source matrix
+ * @returns {mat2} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Set a mat2 to the identity matrix
+ *
+ * @param {mat2} out the receiving matrix
+ * @returns {mat2} out
+ */
+export function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ return out;
+}
+
+/**
+ * Create a new mat2 with the given values
+ *
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m10 Component in column 1, row 0 position (index 2)
+ * @param {Number} m11 Component in column 1, row 1 position (index 3)
+ * @returns {mat2} out A new 2x2 matrix
+ */
+export function fromValues(m00, m01, m10, m11) {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m10;
+ out[3] = m11;
+ return out;
+}
+
+/**
+ * Set the components of a mat2 to the given values
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m10 Component in column 1, row 0 position (index 2)
+ * @param {Number} m11 Component in column 1, row 1 position (index 3)
+ * @returns {mat2} out
+ */
+export function set(out, m00, m01, m10, m11) {
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m10;
+ out[3] = m11;
+ return out;
+}
+
+/**
+ * Transpose the values of a mat2
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the source matrix
+ * @returns {mat2} out
+ */
+export function transpose(out, a) {
+ // If we are transposing ourselves we can skip a few steps but have to cache
+ // some values
+ if (out === a) {
+ var a1 = a[1];
+ out[1] = a[2];
+ out[2] = a1;
+ } else {
+ out[0] = a[0];
+ out[1] = a[2];
+ out[2] = a[1];
+ out[3] = a[3];
+ }
+
+ return out;
+}
+
+/**
+ * Inverts a mat2
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the source matrix
+ * @returns {mat2} out
+ */
+export function invert(out, a) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+
+ // Calculate the determinant
+ var det = a0 * a3 - a2 * a1;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = a3 * det;
+ out[1] = -a1 * det;
+ out[2] = -a2 * det;
+ out[3] = a0 * det;
+
+ return out;
+}
+
+/**
+ * Calculates the adjugate of a mat2
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the source matrix
+ * @returns {mat2} out
+ */
+export function adjoint(out, a) {
+ // Caching this value is nessecary if out == a
+ var a0 = a[0];
+ out[0] = a[3];
+ out[1] = -a[1];
+ out[2] = -a[2];
+ out[3] = a0;
+
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat2
+ *
+ * @param {mat2} a the source matrix
+ * @returns {Number} determinant of a
+ */
+export function determinant(a) {
+ return a[0] * a[3] - a[2] * a[1];
+}
+
+/**
+ * Multiplies two mat2's
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the first operand
+ * @param {mat2} b the second operand
+ * @returns {mat2} out
+ */
+export function multiply(out, a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ out[0] = a0 * b0 + a2 * b1;
+ out[1] = a1 * b0 + a3 * b1;
+ out[2] = a0 * b2 + a2 * b3;
+ out[3] = a1 * b2 + a3 * b3;
+ return out;
+}
+
+/**
+ * Rotates a mat2 by the given angle
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat2} out
+ */
+export function rotate(out, a, rad) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ out[0] = a0 * c + a2 * s;
+ out[1] = a1 * c + a3 * s;
+ out[2] = a0 * -s + a2 * c;
+ out[3] = a1 * -s + a3 * c;
+ return out;
+}
+
+/**
+ * Scales the mat2 by the dimensions in the given vec2
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the matrix to rotate
+ * @param {vec2} v the vec2 to scale the matrix by
+ * @returns {mat2} out
+ **/
+export function scale(out, a, v) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var v0 = v[0],
+ v1 = v[1];
+ out[0] = a0 * v0;
+ out[1] = a1 * v0;
+ out[2] = a2 * v1;
+ out[3] = a3 * v1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle
+ * This is equivalent to (but much faster than):
+ *
+ * mat2.identity(dest);
+ * mat2.rotate(dest, dest, rad);
+ *
+ * @param {mat2} out mat2 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat2} out
+ */
+export function fromRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ out[0] = c;
+ out[1] = s;
+ out[2] = -s;
+ out[3] = c;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat2.identity(dest);
+ * mat2.scale(dest, dest, vec);
+ *
+ * @param {mat2} out mat2 receiving operation result
+ * @param {vec2} v Scaling vector
+ * @returns {mat2} out
+ */
+export function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = v[1];
+ return out;
+}
+
+/**
+ * Returns a string representation of a mat2
+ *
+ * @param {mat2} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+export function str(a) {
+ return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat2
+ *
+ * @param {mat2} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+export function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2));
+}
+
+/**
+ * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
+ * @param {mat2} L the lower triangular matrix
+ * @param {mat2} D the diagonal matrix
+ * @param {mat2} U the upper triangular matrix
+ * @param {mat2} a the input matrix to factorize
+ */
+
+export function LDU(L, D, U, a) {
+ L[2] = a[2] / a[0];
+ U[0] = a[0];
+ U[1] = a[1];
+ U[3] = a[3] - L[2] * U[1];
+ return [L, D, U];
+}
+
+/**
+ * Adds two mat2's
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the first operand
+ * @param {mat2} b the second operand
+ * @returns {mat2} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the first operand
+ * @param {mat2} b the second operand
+ * @returns {mat2} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat2} a The first matrix.
+ * @param {mat2} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat2} a The first matrix.
+ * @param {mat2} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat2} out the receiving matrix
+ * @param {mat2} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat2} out
+ */
+export function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ return out;
+}
+
+/**
+ * Adds two mat2's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat2} out the receiving vector
+ * @param {mat2} a the first operand
+ * @param {mat2} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat2} out
+ */
+export function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ return out;
+}
+
+/**
+ * Alias for {@link mat2.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link mat2.subtract}
+ * @function
+ */
+export var sub = subtract;
\ No newline at end of file
diff --git a/lib/gl-matrix/mat2d.js b/lib/gl-matrix/mat2d.js
new file mode 100644
index 00000000..a7529266
--- /dev/null
+++ b/lib/gl-matrix/mat2d.js
@@ -0,0 +1,484 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 2x3 Matrix
+ * @module mat2d
+ *
+ * @description
+ * A mat2d contains six elements defined as:
+ *
+ * [a, c, tx,
+ * b, d, ty]
+ *
+ * This is a short form for the 3x3 matrix:
+ *
+ * [a, c, tx,
+ * b, d, ty,
+ * 0, 0, 1]
+ *
+ * The last row is ignored so the array is shorter and operations are faster.
+ */
+
+/**
+ * Creates a new identity mat2d
+ *
+ * @returns {mat2d} a new 2x3 matrix
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(6);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[1] = 0;
+ out[2] = 0;
+ out[4] = 0;
+ out[5] = 0;
+ }
+ out[0] = 1;
+ out[3] = 1;
+ return out;
+}
+
+/**
+ * Creates a new mat2d initialized with values from an existing matrix
+ *
+ * @param {mat2d} a matrix to clone
+ * @returns {mat2d} a new 2x3 matrix
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(6);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ return out;
+}
+
+/**
+ * Copy the values from one mat2d to another
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the source matrix
+ * @returns {mat2d} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ return out;
+}
+
+/**
+ * Set a mat2d to the identity matrix
+ *
+ * @param {mat2d} out the receiving matrix
+ * @returns {mat2d} out
+ */
+export function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ out[4] = 0;
+ out[5] = 0;
+ return out;
+}
+
+/**
+ * Create a new mat2d with the given values
+ *
+ * @param {Number} a Component A (index 0)
+ * @param {Number} b Component B (index 1)
+ * @param {Number} c Component C (index 2)
+ * @param {Number} d Component D (index 3)
+ * @param {Number} tx Component TX (index 4)
+ * @param {Number} ty Component TY (index 5)
+ * @returns {mat2d} A new mat2d
+ */
+export function fromValues(a, b, c, d, tx, ty) {
+ var out = new glMatrix.ARRAY_TYPE(6);
+ out[0] = a;
+ out[1] = b;
+ out[2] = c;
+ out[3] = d;
+ out[4] = tx;
+ out[5] = ty;
+ return out;
+}
+
+/**
+ * Set the components of a mat2d to the given values
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {Number} a Component A (index 0)
+ * @param {Number} b Component B (index 1)
+ * @param {Number} c Component C (index 2)
+ * @param {Number} d Component D (index 3)
+ * @param {Number} tx Component TX (index 4)
+ * @param {Number} ty Component TY (index 5)
+ * @returns {mat2d} out
+ */
+export function set(out, a, b, c, d, tx, ty) {
+ out[0] = a;
+ out[1] = b;
+ out[2] = c;
+ out[3] = d;
+ out[4] = tx;
+ out[5] = ty;
+ return out;
+}
+
+/**
+ * Inverts a mat2d
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the source matrix
+ * @returns {mat2d} out
+ */
+export function invert(out, a) {
+ var aa = a[0],
+ ab = a[1],
+ ac = a[2],
+ ad = a[3];
+ var atx = a[4],
+ aty = a[5];
+
+ var det = aa * ad - ab * ac;
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = ad * det;
+ out[1] = -ab * det;
+ out[2] = -ac * det;
+ out[3] = aa * det;
+ out[4] = (ac * aty - ad * atx) * det;
+ out[5] = (ab * atx - aa * aty) * det;
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat2d
+ *
+ * @param {mat2d} a the source matrix
+ * @returns {Number} determinant of a
+ */
+export function determinant(a) {
+ return a[0] * a[3] - a[1] * a[2];
+}
+
+/**
+ * Multiplies two mat2d's
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the first operand
+ * @param {mat2d} b the second operand
+ * @returns {mat2d} out
+ */
+export function multiply(out, a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3],
+ b4 = b[4],
+ b5 = b[5];
+ out[0] = a0 * b0 + a2 * b1;
+ out[1] = a1 * b0 + a3 * b1;
+ out[2] = a0 * b2 + a2 * b3;
+ out[3] = a1 * b2 + a3 * b3;
+ out[4] = a0 * b4 + a2 * b5 + a4;
+ out[5] = a1 * b4 + a3 * b5 + a5;
+ return out;
+}
+
+/**
+ * Rotates a mat2d by the given angle
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat2d} out
+ */
+export function rotate(out, a, rad) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5];
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ out[0] = a0 * c + a2 * s;
+ out[1] = a1 * c + a3 * s;
+ out[2] = a0 * -s + a2 * c;
+ out[3] = a1 * -s + a3 * c;
+ out[4] = a4;
+ out[5] = a5;
+ return out;
+}
+
+/**
+ * Scales the mat2d by the dimensions in the given vec2
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the matrix to translate
+ * @param {vec2} v the vec2 to scale the matrix by
+ * @returns {mat2d} out
+ **/
+export function scale(out, a, v) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5];
+ var v0 = v[0],
+ v1 = v[1];
+ out[0] = a0 * v0;
+ out[1] = a1 * v0;
+ out[2] = a2 * v1;
+ out[3] = a3 * v1;
+ out[4] = a4;
+ out[5] = a5;
+ return out;
+}
+
+/**
+ * Translates the mat2d by the dimensions in the given vec2
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the matrix to translate
+ * @param {vec2} v the vec2 to translate the matrix by
+ * @returns {mat2d} out
+ **/
+export function translate(out, a, v) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5];
+ var v0 = v[0],
+ v1 = v[1];
+ out[0] = a0;
+ out[1] = a1;
+ out[2] = a2;
+ out[3] = a3;
+ out[4] = a0 * v0 + a2 * v1 + a4;
+ out[5] = a1 * v0 + a3 * v1 + a5;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle
+ * This is equivalent to (but much faster than):
+ *
+ * mat2d.identity(dest);
+ * mat2d.rotate(dest, dest, rad);
+ *
+ * @param {mat2d} out mat2d receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat2d} out
+ */
+export function fromRotation(out, rad) {
+ var s = Math.sin(rad),
+ c = Math.cos(rad);
+ out[0] = c;
+ out[1] = s;
+ out[2] = -s;
+ out[3] = c;
+ out[4] = 0;
+ out[5] = 0;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat2d.identity(dest);
+ * mat2d.scale(dest, dest, vec);
+ *
+ * @param {mat2d} out mat2d receiving operation result
+ * @param {vec2} v Scaling vector
+ * @returns {mat2d} out
+ */
+export function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = v[1];
+ out[4] = 0;
+ out[5] = 0;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat2d.identity(dest);
+ * mat2d.translate(dest, dest, vec);
+ *
+ * @param {mat2d} out mat2d receiving operation result
+ * @param {vec2} v Translation vector
+ * @returns {mat2d} out
+ */
+export function fromTranslation(out, v) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ out[4] = v[0];
+ out[5] = v[1];
+ return out;
+}
+
+/**
+ * Returns a string representation of a mat2d
+ *
+ * @param {mat2d} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+export function str(a) {
+ return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat2d
+ *
+ * @param {mat2d} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+export function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1);
+}
+
+/**
+ * Adds two mat2d's
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the first operand
+ * @param {mat2d} b the second operand
+ * @returns {mat2d} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the first operand
+ * @param {mat2d} b the second operand
+ * @returns {mat2d} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ out[4] = a[4] - b[4];
+ out[5] = a[5] - b[5];
+ return out;
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat2d} out the receiving matrix
+ * @param {mat2d} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat2d} out
+ */
+export function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ return out;
+}
+
+/**
+ * Adds two mat2d's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat2d} out the receiving vector
+ * @param {mat2d} a the first operand
+ * @param {mat2d} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat2d} out
+ */
+export function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ out[4] = a[4] + b[4] * scale;
+ out[5] = a[5] + b[5] * scale;
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat2d} a The first matrix.
+ * @param {mat2d} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat2d} a The first matrix.
+ * @param {mat2d} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3],
+ b4 = b[4],
+ b5 = b[5];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));
+}
+
+/**
+ * Alias for {@link mat2d.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link mat2d.subtract}
+ * @function
+ */
+export var sub = subtract;
\ No newline at end of file
diff --git a/lib/gl-matrix/mat3.js b/lib/gl-matrix/mat3.js
new file mode 100644
index 00000000..8525b303
--- /dev/null
+++ b/lib/gl-matrix/mat3.js
@@ -0,0 +1,810 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 3x3 Matrix
+ * @module mat3
+ */
+
+/**
+ * Creates a new identity mat3
+ *
+ * @returns {mat3} a new 3x3 matrix
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ }
+ out[0] = 1;
+ out[4] = 1;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Copies the upper-left 3x3 values into the given mat3.
+ *
+ * @param {mat3} out the receiving 3x3 matrix
+ * @param {mat4} a the source 4x4 matrix
+ * @returns {mat3} out
+ */
+export function fromMat4(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[4];
+ out[4] = a[5];
+ out[5] = a[6];
+ out[6] = a[8];
+ out[7] = a[9];
+ out[8] = a[10];
+ return out;
+}
+
+/**
+ * Creates a new mat3 initialized with values from an existing matrix
+ *
+ * @param {mat3} a matrix to clone
+ * @returns {mat3} a new 3x3 matrix
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Copy the values from one mat3 to another
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Create a new mat3 with the given values
+ *
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m10 Component in column 1, row 0 position (index 3)
+ * @param {Number} m11 Component in column 1, row 1 position (index 4)
+ * @param {Number} m12 Component in column 1, row 2 position (index 5)
+ * @param {Number} m20 Component in column 2, row 0 position (index 6)
+ * @param {Number} m21 Component in column 2, row 1 position (index 7)
+ * @param {Number} m22 Component in column 2, row 2 position (index 8)
+ * @returns {mat3} A new mat3
+ */
+export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m10;
+ out[4] = m11;
+ out[5] = m12;
+ out[6] = m20;
+ out[7] = m21;
+ out[8] = m22;
+ return out;
+}
+
+/**
+ * Set the components of a mat3 to the given values
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m10 Component in column 1, row 0 position (index 3)
+ * @param {Number} m11 Component in column 1, row 1 position (index 4)
+ * @param {Number} m12 Component in column 1, row 2 position (index 5)
+ * @param {Number} m20 Component in column 2, row 0 position (index 6)
+ * @param {Number} m21 Component in column 2, row 1 position (index 7)
+ * @param {Number} m22 Component in column 2, row 2 position (index 8)
+ * @returns {mat3} out
+ */
+export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m10;
+ out[4] = m11;
+ out[5] = m12;
+ out[6] = m20;
+ out[7] = m21;
+ out[8] = m22;
+ return out;
+}
+
+/**
+ * Set a mat3 to the identity matrix
+ *
+ * @param {mat3} out the receiving matrix
+ * @returns {mat3} out
+ */
+export function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 1;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Transpose the values of a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+export function transpose(out, a) {
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
+ if (out === a) {
+ var a01 = a[1],
+ a02 = a[2],
+ a12 = a[5];
+ out[1] = a[3];
+ out[2] = a[6];
+ out[3] = a01;
+ out[5] = a[7];
+ out[6] = a02;
+ out[7] = a12;
+ } else {
+ out[0] = a[0];
+ out[1] = a[3];
+ out[2] = a[6];
+ out[3] = a[1];
+ out[4] = a[4];
+ out[5] = a[7];
+ out[6] = a[2];
+ out[7] = a[5];
+ out[8] = a[8];
+ }
+
+ return out;
+}
+
+/**
+ * Inverts a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+export function invert(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ var b01 = a22 * a11 - a12 * a21;
+ var b11 = -a22 * a10 + a12 * a20;
+ var b21 = a21 * a10 - a11 * a20;
+
+ // Calculate the determinant
+ var det = a00 * b01 + a01 * b11 + a02 * b21;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = b01 * det;
+ out[1] = (-a22 * a01 + a02 * a21) * det;
+ out[2] = (a12 * a01 - a02 * a11) * det;
+ out[3] = b11 * det;
+ out[4] = (a22 * a00 - a02 * a20) * det;
+ out[5] = (-a12 * a00 + a02 * a10) * det;
+ out[6] = b21 * det;
+ out[7] = (-a21 * a00 + a01 * a20) * det;
+ out[8] = (a11 * a00 - a01 * a10) * det;
+ return out;
+}
+
+/**
+ * Calculates the adjugate of a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+export function adjoint(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ out[0] = a11 * a22 - a12 * a21;
+ out[1] = a02 * a21 - a01 * a22;
+ out[2] = a01 * a12 - a02 * a11;
+ out[3] = a12 * a20 - a10 * a22;
+ out[4] = a00 * a22 - a02 * a20;
+ out[5] = a02 * a10 - a00 * a12;
+ out[6] = a10 * a21 - a11 * a20;
+ out[7] = a01 * a20 - a00 * a21;
+ out[8] = a00 * a11 - a01 * a10;
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat3
+ *
+ * @param {mat3} a the source matrix
+ * @returns {Number} determinant of a
+ */
+export function determinant(a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
+}
+
+/**
+ * Multiplies two mat3's
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+export function multiply(out, a, b) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ var b00 = b[0],
+ b01 = b[1],
+ b02 = b[2];
+ var b10 = b[3],
+ b11 = b[4],
+ b12 = b[5];
+ var b20 = b[6],
+ b21 = b[7],
+ b22 = b[8];
+
+ out[0] = b00 * a00 + b01 * a10 + b02 * a20;
+ out[1] = b00 * a01 + b01 * a11 + b02 * a21;
+ out[2] = b00 * a02 + b01 * a12 + b02 * a22;
+
+ out[3] = b10 * a00 + b11 * a10 + b12 * a20;
+ out[4] = b10 * a01 + b11 * a11 + b12 * a21;
+ out[5] = b10 * a02 + b11 * a12 + b12 * a22;
+
+ out[6] = b20 * a00 + b21 * a10 + b22 * a20;
+ out[7] = b20 * a01 + b21 * a11 + b22 * a21;
+ out[8] = b20 * a02 + b21 * a12 + b22 * a22;
+ return out;
+}
+
+/**
+ * Translate a mat3 by the given vector
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to translate
+ * @param {vec2} v vector to translate by
+ * @returns {mat3} out
+ */
+export function translate(out, a, v) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a10 = a[3],
+ a11 = a[4],
+ a12 = a[5],
+ a20 = a[6],
+ a21 = a[7],
+ a22 = a[8],
+ x = v[0],
+ y = v[1];
+
+ out[0] = a00;
+ out[1] = a01;
+ out[2] = a02;
+
+ out[3] = a10;
+ out[4] = a11;
+ out[5] = a12;
+
+ out[6] = x * a00 + y * a10 + a20;
+ out[7] = x * a01 + y * a11 + a21;
+ out[8] = x * a02 + y * a12 + a22;
+ return out;
+}
+
+/**
+ * Rotates a mat3 by the given angle
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat3} out
+ */
+export function rotate(out, a, rad) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a10 = a[3],
+ a11 = a[4],
+ a12 = a[5],
+ a20 = a[6],
+ a21 = a[7],
+ a22 = a[8],
+ s = Math.sin(rad),
+ c = Math.cos(rad);
+
+ out[0] = c * a00 + s * a10;
+ out[1] = c * a01 + s * a11;
+ out[2] = c * a02 + s * a12;
+
+ out[3] = c * a10 - s * a00;
+ out[4] = c * a11 - s * a01;
+ out[5] = c * a12 - s * a02;
+
+ out[6] = a20;
+ out[7] = a21;
+ out[8] = a22;
+ return out;
+};
+
+/**
+ * Scales the mat3 by the dimensions in the given vec2
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to rotate
+ * @param {vec2} v the vec2 to scale the matrix by
+ * @returns {mat3} out
+ **/
+export function scale(out, a, v) {
+ var x = v[0],
+ y = v[1];
+
+ out[0] = x * a[0];
+ out[1] = x * a[1];
+ out[2] = x * a[2];
+
+ out[3] = y * a[3];
+ out[4] = y * a[4];
+ out[5] = y * a[5];
+
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.translate(dest, dest, vec);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {vec2} v Translation vector
+ * @returns {mat3} out
+ */
+export function fromTranslation(out, v) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 1;
+ out[5] = 0;
+ out[6] = v[0];
+ out[7] = v[1];
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.rotate(dest, dest, rad);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat3} out
+ */
+export function fromRotation(out, rad) {
+ var s = Math.sin(rad),
+ c = Math.cos(rad);
+
+ out[0] = c;
+ out[1] = s;
+ out[2] = 0;
+
+ out[3] = -s;
+ out[4] = c;
+ out[5] = 0;
+
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.scale(dest, dest, vec);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {vec2} v Scaling vector
+ * @returns {mat3} out
+ */
+export function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+
+ out[3] = 0;
+ out[4] = v[1];
+ out[5] = 0;
+
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Copies the values from a mat2d into a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat2d} a the matrix to copy
+ * @returns {mat3} out
+ **/
+export function fromMat2d(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = 0;
+
+ out[3] = a[2];
+ out[4] = a[3];
+ out[5] = 0;
+
+ out[6] = a[4];
+ out[7] = a[5];
+ out[8] = 1;
+ return out;
+}
+
+/**
+* Calculates a 3x3 matrix from the given quaternion
+*
+* @param {mat3} out mat3 receiving operation result
+* @param {quat} q Quaternion to create matrix from
+*
+* @returns {mat3} out
+*/
+export function fromQuat(out, q) {
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var yx = y * x2;
+ var yy = y * y2;
+ var zx = z * x2;
+ var zy = z * y2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - yy - zz;
+ out[3] = yx - wz;
+ out[6] = zx + wy;
+
+ out[1] = yx + wz;
+ out[4] = 1 - xx - zz;
+ out[7] = zy - wx;
+
+ out[2] = zx - wy;
+ out[5] = zy + wx;
+ out[8] = 1 - xx - yy;
+
+ return out;
+}
+
+/**
+* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
+*
+* @param {mat3} out mat3 receiving operation result
+* @param {mat4} a Mat4 to derive the normal matrix from
+*
+* @returns {mat3} out
+*/
+export function normalFromMat4(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+ out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+ out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+
+ out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+ out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+ out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+
+ out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+ out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+ out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+
+ return out;
+}
+
+/**
+ * Generates a 2D projection matrix with the given bounds
+ *
+ * @param {mat3} out mat3 frustum matrix will be written into
+ * @param {number} width Width of your gl context
+ * @param {number} height Height of gl context
+ * @returns {mat3} out
+ */
+export function projection(out, width, height) {
+ out[0] = 2 / width;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = -2 / height;
+ out[5] = 0;
+ out[6] = -1;
+ out[7] = 1;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Returns a string representation of a mat3
+ *
+ * @param {mat3} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+export function str(a) {
+ return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat3
+ *
+ * @param {mat3} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+export function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));
+}
+
+/**
+ * Adds two mat3's
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ out[6] = a[6] + b[6];
+ out[7] = a[7] + b[7];
+ out[8] = a[8] + b[8];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ out[4] = a[4] - b[4];
+ out[5] = a[5] - b[5];
+ out[6] = a[6] - b[6];
+ out[7] = a[7] - b[7];
+ out[8] = a[8] - b[8];
+ return out;
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat3} out
+ */
+export function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ out[6] = a[6] * b;
+ out[7] = a[7] * b;
+ out[8] = a[8] * b;
+ return out;
+}
+
+/**
+ * Adds two mat3's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat3} out the receiving vector
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat3} out
+ */
+export function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ out[4] = a[4] + b[4] * scale;
+ out[5] = a[5] + b[5] * scale;
+ out[6] = a[6] + b[6] * scale;
+ out[7] = a[7] + b[7] * scale;
+ out[8] = a[8] + b[8] * scale;
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat3} a The first matrix.
+ * @param {mat3} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat3} a The first matrix.
+ * @param {mat3} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5],
+ a6 = a[6],
+ a7 = a[7],
+ a8 = a[8];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3],
+ b4 = b[4],
+ b5 = b[5],
+ b6 = b[6],
+ b7 = b[7],
+ b8 = b[8];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
+}
+
+/**
+ * Alias for {@link mat3.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link mat3.subtract}
+ * @function
+ */
+export var sub = subtract;
\ No newline at end of file
diff --git a/lib/gl-matrix/mat4.js b/lib/gl-matrix/mat4.js
new file mode 100644
index 00000000..87fcd77e
--- /dev/null
+++ b/lib/gl-matrix/mat4.js
@@ -0,0 +1,1841 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 4x4 Matrix
Format: column-major, when typed out it looks like row-major
The matrices are being post multiplied.
+ * @module mat4
+ */
+
+/**
+ * Creates a new identity mat4
+ *
+ * @returns {mat4} a new 4x4 matrix
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ }
+ out[0] = 1;
+ out[5] = 1;
+ out[10] = 1;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a new mat4 initialized with values from an existing matrix
+ *
+ * @param {mat4} a matrix to clone
+ * @returns {mat4} a new 4x4 matrix
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Copy the values from one mat4 to another
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Create a new mat4 with the given values
+ *
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m03 Component in column 0, row 3 position (index 3)
+ * @param {Number} m10 Component in column 1, row 0 position (index 4)
+ * @param {Number} m11 Component in column 1, row 1 position (index 5)
+ * @param {Number} m12 Component in column 1, row 2 position (index 6)
+ * @param {Number} m13 Component in column 1, row 3 position (index 7)
+ * @param {Number} m20 Component in column 2, row 0 position (index 8)
+ * @param {Number} m21 Component in column 2, row 1 position (index 9)
+ * @param {Number} m22 Component in column 2, row 2 position (index 10)
+ * @param {Number} m23 Component in column 2, row 3 position (index 11)
+ * @param {Number} m30 Component in column 3, row 0 position (index 12)
+ * @param {Number} m31 Component in column 3, row 1 position (index 13)
+ * @param {Number} m32 Component in column 3, row 2 position (index 14)
+ * @param {Number} m33 Component in column 3, row 3 position (index 15)
+ * @returns {mat4} A new mat4
+ */
+export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m03;
+ out[4] = m10;
+ out[5] = m11;
+ out[6] = m12;
+ out[7] = m13;
+ out[8] = m20;
+ out[9] = m21;
+ out[10] = m22;
+ out[11] = m23;
+ out[12] = m30;
+ out[13] = m31;
+ out[14] = m32;
+ out[15] = m33;
+ return out;
+}
+
+/**
+ * Set the components of a mat4 to the given values
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m03 Component in column 0, row 3 position (index 3)
+ * @param {Number} m10 Component in column 1, row 0 position (index 4)
+ * @param {Number} m11 Component in column 1, row 1 position (index 5)
+ * @param {Number} m12 Component in column 1, row 2 position (index 6)
+ * @param {Number} m13 Component in column 1, row 3 position (index 7)
+ * @param {Number} m20 Component in column 2, row 0 position (index 8)
+ * @param {Number} m21 Component in column 2, row 1 position (index 9)
+ * @param {Number} m22 Component in column 2, row 2 position (index 10)
+ * @param {Number} m23 Component in column 2, row 3 position (index 11)
+ * @param {Number} m30 Component in column 3, row 0 position (index 12)
+ * @param {Number} m31 Component in column 3, row 1 position (index 13)
+ * @param {Number} m32 Component in column 3, row 2 position (index 14)
+ * @param {Number} m33 Component in column 3, row 3 position (index 15)
+ * @returns {mat4} out
+ */
+export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m03;
+ out[4] = m10;
+ out[5] = m11;
+ out[6] = m12;
+ out[7] = m13;
+ out[8] = m20;
+ out[9] = m21;
+ out[10] = m22;
+ out[11] = m23;
+ out[12] = m30;
+ out[13] = m31;
+ out[14] = m32;
+ out[15] = m33;
+ return out;
+}
+
+/**
+ * Set a mat4 to the identity matrix
+ *
+ * @param {mat4} out the receiving matrix
+ * @returns {mat4} out
+ */
+export function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Transpose the values of a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+export function transpose(out, a) {
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
+ if (out === a) {
+ var a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a12 = a[6],
+ a13 = a[7];
+ var a23 = a[11];
+
+ out[1] = a[4];
+ out[2] = a[8];
+ out[3] = a[12];
+ out[4] = a01;
+ out[6] = a[9];
+ out[7] = a[13];
+ out[8] = a02;
+ out[9] = a12;
+ out[11] = a[14];
+ out[12] = a03;
+ out[13] = a13;
+ out[14] = a23;
+ } else {
+ out[0] = a[0];
+ out[1] = a[4];
+ out[2] = a[8];
+ out[3] = a[12];
+ out[4] = a[1];
+ out[5] = a[5];
+ out[6] = a[9];
+ out[7] = a[13];
+ out[8] = a[2];
+ out[9] = a[6];
+ out[10] = a[10];
+ out[11] = a[14];
+ out[12] = a[3];
+ out[13] = a[7];
+ out[14] = a[11];
+ out[15] = a[15];
+ }
+
+ return out;
+}
+
+/**
+ * Inverts a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+export function invert(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+ out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+ out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+ out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
+ out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+ out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+ out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+ out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
+ out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+ out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+ out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+ out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
+ out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
+ out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
+ out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
+ out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
+
+ return out;
+}
+
+/**
+ * Calculates the adjugate of a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+export function adjoint(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);
+ out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
+ out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);
+ out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
+ out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
+ out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);
+ out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
+ out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);
+ out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);
+ out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
+ out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);
+ out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
+ out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
+ out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);
+ out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
+ out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat4
+ *
+ * @param {mat4} a the source matrix
+ * @returns {Number} determinant of a
+ */
+export function determinant(a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+}
+
+/**
+ * Multiplies two mat4s
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+export function multiply(out, a, b) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ // Cache only the current line of the second matrix
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7];
+ out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11];
+ out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15];
+ out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+ return out;
+}
+
+/**
+ * Translate a mat4 by the given vector
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to translate
+ * @param {vec3} v vector to translate by
+ * @returns {mat4} out
+ */
+export function translate(out, a, v) {
+ var x = v[0],
+ y = v[1],
+ z = v[2];
+ var a00 = void 0,
+ a01 = void 0,
+ a02 = void 0,
+ a03 = void 0;
+ var a10 = void 0,
+ a11 = void 0,
+ a12 = void 0,
+ a13 = void 0;
+ var a20 = void 0,
+ a21 = void 0,
+ a22 = void 0,
+ a23 = void 0;
+
+ if (a === out) {
+ out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
+ out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
+ out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
+ out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
+ } else {
+ a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
+ a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
+ a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
+
+ out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;
+ out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;
+ out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;
+
+ out[12] = a00 * x + a10 * y + a20 * z + a[12];
+ out[13] = a01 * x + a11 * y + a21 * z + a[13];
+ out[14] = a02 * x + a12 * y + a22 * z + a[14];
+ out[15] = a03 * x + a13 * y + a23 * z + a[15];
+ }
+
+ return out;
+}
+
+/**
+ * Scales the mat4 by the dimensions in the given vec3 not using vectorization
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to scale
+ * @param {vec3} v the vec3 to scale the matrix by
+ * @returns {mat4} out
+ **/
+export function scale(out, a, v) {
+ var x = v[0],
+ y = v[1],
+ z = v[2];
+
+ out[0] = a[0] * x;
+ out[1] = a[1] * x;
+ out[2] = a[2] * x;
+ out[3] = a[3] * x;
+ out[4] = a[4] * y;
+ out[5] = a[5] * y;
+ out[6] = a[6] * y;
+ out[7] = a[7] * y;
+ out[8] = a[8] * z;
+ out[9] = a[9] * z;
+ out[10] = a[10] * z;
+ out[11] = a[11] * z;
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Rotates a mat4 by the given angle around the given axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @param {vec3} axis the axis to rotate around
+ * @returns {mat4} out
+ */
+export function rotate(out, a, rad, axis) {
+ var x = axis[0],
+ y = axis[1],
+ z = axis[2];
+ var len = Math.sqrt(x * x + y * y + z * z);
+ var s = void 0,
+ c = void 0,
+ t = void 0;
+ var a00 = void 0,
+ a01 = void 0,
+ a02 = void 0,
+ a03 = void 0;
+ var a10 = void 0,
+ a11 = void 0,
+ a12 = void 0,
+ a13 = void 0;
+ var a20 = void 0,
+ a21 = void 0,
+ a22 = void 0,
+ a23 = void 0;
+ var b00 = void 0,
+ b01 = void 0,
+ b02 = void 0;
+ var b10 = void 0,
+ b11 = void 0,
+ b12 = void 0;
+ var b20 = void 0,
+ b21 = void 0,
+ b22 = void 0;
+
+ if (len < glMatrix.EPSILON) {
+ return null;
+ }
+
+ len = 1 / len;
+ x *= len;
+ y *= len;
+ z *= len;
+
+ s = Math.sin(rad);
+ c = Math.cos(rad);
+ t = 1 - c;
+
+ a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
+ a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
+ a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
+
+ // Construct the elements of the rotation matrix
+ b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s;
+ b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s;
+ b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c;
+
+ // Perform rotation-specific matrix multiplication
+ out[0] = a00 * b00 + a10 * b01 + a20 * b02;
+ out[1] = a01 * b00 + a11 * b01 + a21 * b02;
+ out[2] = a02 * b00 + a12 * b01 + a22 * b02;
+ out[3] = a03 * b00 + a13 * b01 + a23 * b02;
+ out[4] = a00 * b10 + a10 * b11 + a20 * b12;
+ out[5] = a01 * b10 + a11 * b11 + a21 * b12;
+ out[6] = a02 * b10 + a12 * b11 + a22 * b12;
+ out[7] = a03 * b10 + a13 * b11 + a23 * b12;
+ out[8] = a00 * b20 + a10 * b21 + a20 * b22;
+ out[9] = a01 * b20 + a11 * b21 + a21 * b22;
+ out[10] = a02 * b20 + a12 * b21 + a22 * b22;
+ out[11] = a03 * b20 + a13 * b21 + a23 * b22;
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged last row
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the X axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function rotateX(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a10 = a[4];
+ var a11 = a[5];
+ var a12 = a[6];
+ var a13 = a[7];
+ var a20 = a[8];
+ var a21 = a[9];
+ var a22 = a[10];
+ var a23 = a[11];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged rows
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[4] = a10 * c + a20 * s;
+ out[5] = a11 * c + a21 * s;
+ out[6] = a12 * c + a22 * s;
+ out[7] = a13 * c + a23 * s;
+ out[8] = a20 * c - a10 * s;
+ out[9] = a21 * c - a11 * s;
+ out[10] = a22 * c - a12 * s;
+ out[11] = a23 * c - a13 * s;
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the Y axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function rotateY(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a00 = a[0];
+ var a01 = a[1];
+ var a02 = a[2];
+ var a03 = a[3];
+ var a20 = a[8];
+ var a21 = a[9];
+ var a22 = a[10];
+ var a23 = a[11];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged rows
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[0] = a00 * c - a20 * s;
+ out[1] = a01 * c - a21 * s;
+ out[2] = a02 * c - a22 * s;
+ out[3] = a03 * c - a23 * s;
+ out[8] = a00 * s + a20 * c;
+ out[9] = a01 * s + a21 * c;
+ out[10] = a02 * s + a22 * c;
+ out[11] = a03 * s + a23 * c;
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the Z axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function rotateZ(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a00 = a[0];
+ var a01 = a[1];
+ var a02 = a[2];
+ var a03 = a[3];
+ var a10 = a[4];
+ var a11 = a[5];
+ var a12 = a[6];
+ var a13 = a[7];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged last row
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[0] = a00 * c + a10 * s;
+ out[1] = a01 * c + a11 * s;
+ out[2] = a02 * c + a12 * s;
+ out[3] = a03 * c + a13 * s;
+ out[4] = a10 * c - a00 * s;
+ out[5] = a11 * c - a01 * s;
+ out[6] = a12 * c - a02 * s;
+ out[7] = a13 * c - a03 * s;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, dest, vec);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {vec3} v Translation vector
+ * @returns {mat4} out
+ */
+export function fromTranslation(out, v) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.scale(dest, dest, vec);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {vec3} v Scaling vector
+ * @returns {mat4} out
+ */
+export function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = v[1];
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = v[2];
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle around a given axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotate(dest, dest, rad, axis);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @param {vec3} axis the axis to rotate around
+ * @returns {mat4} out
+ */
+export function fromRotation(out, rad, axis) {
+ var x = axis[0],
+ y = axis[1],
+ z = axis[2];
+ var len = Math.sqrt(x * x + y * y + z * z);
+ var s = void 0,
+ c = void 0,
+ t = void 0;
+
+ if (len < glMatrix.EPSILON) {
+ return null;
+ }
+
+ len = 1 / len;
+ x *= len;
+ y *= len;
+ z *= len;
+
+ s = Math.sin(rad);
+ c = Math.cos(rad);
+ t = 1 - c;
+
+ // Perform rotation-specific matrix multiplication
+ out[0] = x * x * t + c;
+ out[1] = y * x * t + z * s;
+ out[2] = z * x * t - y * s;
+ out[3] = 0;
+ out[4] = x * y * t - z * s;
+ out[5] = y * y * t + c;
+ out[6] = z * y * t + x * s;
+ out[7] = 0;
+ out[8] = x * z * t + y * s;
+ out[9] = y * z * t - x * s;
+ out[10] = z * z * t + c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the X axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateX(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function fromXRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = c;
+ out[6] = s;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = -s;
+ out[10] = c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the Y axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateY(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function fromYRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = c;
+ out[1] = 0;
+ out[2] = -s;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = s;
+ out[9] = 0;
+ out[10] = c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the Z axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateZ(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+export function fromZRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = c;
+ out[1] = s;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = -s;
+ out[5] = c;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation and vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @returns {mat4} out
+ */
+export function fromRotationTranslation(out, q, v) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - (yy + zz);
+ out[1] = xy + wz;
+ out[2] = xz - wy;
+ out[3] = 0;
+ out[4] = xy - wz;
+ out[5] = 1 - (xx + zz);
+ out[6] = yz + wx;
+ out[7] = 0;
+ out[8] = xz + wy;
+ out[9] = yz - wx;
+ out[10] = 1 - (xx + yy);
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Creates a new mat4 from a dual quat.
+ *
+ * @param {mat4} out Matrix
+ * @param {quat2} a Dual Quaternion
+ * @returns {mat4} mat4 receiving operation result
+ */
+export function fromQuat2(out, a) {
+ var translation = new glMatrix.ARRAY_TYPE(3);
+ var bx = -a[0],
+ by = -a[1],
+ bz = -a[2],
+ bw = a[3],
+ ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7];
+
+ var magnitude = bx * bx + by * by + bz * bz + bw * bw;
+ //Only scale if it makes sense
+ if (magnitude > 0) {
+ translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;
+ translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;
+ translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;
+ } else {
+ translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
+ translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
+ translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
+ }
+ fromRotationTranslation(out, a, translation);
+ return out;
+}
+
+/**
+ * Returns the translation vector component of a transformation
+ * matrix. If a matrix is built with fromRotationTranslation,
+ * the returned vector will be the same as the translation vector
+ * originally supplied.
+ * @param {vec3} out Vector to receive translation component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {vec3} out
+ */
+export function getTranslation(out, mat) {
+ out[0] = mat[12];
+ out[1] = mat[13];
+ out[2] = mat[14];
+
+ return out;
+}
+
+/**
+ * Returns the scaling factor component of a transformation
+ * matrix. If a matrix is built with fromRotationTranslationScale
+ * with a normalized Quaternion paramter, the returned vector will be
+ * the same as the scaling vector
+ * originally supplied.
+ * @param {vec3} out Vector to receive scaling factor component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {vec3} out
+ */
+export function getScaling(out, mat) {
+ var m11 = mat[0];
+ var m12 = mat[1];
+ var m13 = mat[2];
+ var m21 = mat[4];
+ var m22 = mat[5];
+ var m23 = mat[6];
+ var m31 = mat[8];
+ var m32 = mat[9];
+ var m33 = mat[10];
+
+ out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
+ out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
+ out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
+
+ return out;
+}
+
+/**
+ * Returns a quaternion representing the rotational component
+ * of a transformation matrix. If a matrix is built with
+ * fromRotationTranslation, the returned quaternion will be the
+ * same as the quaternion originally supplied.
+ * @param {quat} out Quaternion to receive the rotation component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {quat} out
+ */
+export function getRotation(out, mat) {
+ // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
+ var trace = mat[0] + mat[5] + mat[10];
+ var S = 0;
+
+ if (trace > 0) {
+ S = Math.sqrt(trace + 1.0) * 2;
+ out[3] = 0.25 * S;
+ out[0] = (mat[6] - mat[9]) / S;
+ out[1] = (mat[8] - mat[2]) / S;
+ out[2] = (mat[1] - mat[4]) / S;
+ } else if (mat[0] > mat[5] && mat[0] > mat[10]) {
+ S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
+ out[3] = (mat[6] - mat[9]) / S;
+ out[0] = 0.25 * S;
+ out[1] = (mat[1] + mat[4]) / S;
+ out[2] = (mat[8] + mat[2]) / S;
+ } else if (mat[5] > mat[10]) {
+ S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
+ out[3] = (mat[8] - mat[2]) / S;
+ out[0] = (mat[1] + mat[4]) / S;
+ out[1] = 0.25 * S;
+ out[2] = (mat[6] + mat[9]) / S;
+ } else {
+ S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
+ out[3] = (mat[1] - mat[4]) / S;
+ out[0] = (mat[8] + mat[2]) / S;
+ out[1] = (mat[6] + mat[9]) / S;
+ out[2] = 0.25 * S;
+ }
+
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation, vector translation and vector scale
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ * mat4.scale(dest, scale)
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @param {vec3} s Scaling vector
+ * @returns {mat4} out
+ */
+export function fromRotationTranslationScale(out, q, v, s) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+ var sx = s[0];
+ var sy = s[1];
+ var sz = s[2];
+
+ out[0] = (1 - (yy + zz)) * sx;
+ out[1] = (xy + wz) * sx;
+ out[2] = (xz - wy) * sx;
+ out[3] = 0;
+ out[4] = (xy - wz) * sy;
+ out[5] = (1 - (xx + zz)) * sy;
+ out[6] = (yz + wx) * sy;
+ out[7] = 0;
+ out[8] = (xz + wy) * sz;
+ out[9] = (yz - wx) * sz;
+ out[10] = (1 - (xx + yy)) * sz;
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * mat4.translate(dest, origin);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ * mat4.scale(dest, scale)
+ * mat4.translate(dest, negativeOrigin);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @param {vec3} s Scaling vector
+ * @param {vec3} o The origin vector around which to scale and rotate
+ * @returns {mat4} out
+ */
+export function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ var sx = s[0];
+ var sy = s[1];
+ var sz = s[2];
+
+ var ox = o[0];
+ var oy = o[1];
+ var oz = o[2];
+
+ var out0 = (1 - (yy + zz)) * sx;
+ var out1 = (xy + wz) * sx;
+ var out2 = (xz - wy) * sx;
+ var out4 = (xy - wz) * sy;
+ var out5 = (1 - (xx + zz)) * sy;
+ var out6 = (yz + wx) * sy;
+ var out8 = (xz + wy) * sz;
+ var out9 = (yz - wx) * sz;
+ var out10 = (1 - (xx + yy)) * sz;
+
+ out[0] = out0;
+ out[1] = out1;
+ out[2] = out2;
+ out[3] = 0;
+ out[4] = out4;
+ out[5] = out5;
+ out[6] = out6;
+ out[7] = 0;
+ out[8] = out8;
+ out[9] = out9;
+ out[10] = out10;
+ out[11] = 0;
+ out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);
+ out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);
+ out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Calculates a 4x4 matrix from the given quaternion
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat} q Quaternion to create matrix from
+ *
+ * @returns {mat4} out
+ */
+export function fromQuat(out, q) {
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var yx = y * x2;
+ var yy = y * y2;
+ var zx = z * x2;
+ var zy = z * y2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - yy - zz;
+ out[1] = yx + wz;
+ out[2] = zx - wy;
+ out[3] = 0;
+
+ out[4] = yx - wz;
+ out[5] = 1 - xx - zz;
+ out[6] = zy + wx;
+ out[7] = 0;
+
+ out[8] = zx + wy;
+ out[9] = zy - wx;
+ out[10] = 1 - xx - yy;
+ out[11] = 0;
+
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Generates a frustum matrix with the given bounds
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {Number} left Left bound of the frustum
+ * @param {Number} right Right bound of the frustum
+ * @param {Number} bottom Bottom bound of the frustum
+ * @param {Number} top Top bound of the frustum
+ * @param {Number} near Near bound of the frustum
+ * @param {Number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+export function frustum(out, left, right, bottom, top, near, far) {
+ var rl = 1 / (right - left);
+ var tb = 1 / (top - bottom);
+ var nf = 1 / (near - far);
+ out[0] = near * 2 * rl;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = near * 2 * tb;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = (right + left) * rl;
+ out[9] = (top + bottom) * tb;
+ out[10] = (far + near) * nf;
+ out[11] = -1;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = far * near * 2 * nf;
+ out[15] = 0;
+ return out;
+}
+
+/**
+ * Generates a perspective projection matrix with the given bounds.
+ * Passing null/undefined/no value for far will generate infinite projection matrix.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {number} fovy Vertical field of view in radians
+ * @param {number} aspect Aspect ratio. typically viewport width/height
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum, can be null or Infinity
+ * @returns {mat4} out
+ */
+export function perspective(out, fovy, aspect, near, far) {
+ var f = 1.0 / Math.tan(fovy / 2),
+ nf = void 0;
+ out[0] = f / aspect;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = f;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[11] = -1;
+ out[12] = 0;
+ out[13] = 0;
+ out[15] = 0;
+ if (far != null && far !== Infinity) {
+ nf = 1 / (near - far);
+ out[10] = (far + near) * nf;
+ out[14] = 2 * far * near * nf;
+ } else {
+ out[10] = -1;
+ out[14] = -2 * near;
+ }
+ return out;
+}
+
+/**
+ * Generates a perspective projection matrix with the given field of view.
+ * This is primarily useful for generating projection matrices to be used
+ * with the still experiemental WebVR API.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+export function perspectiveFromFieldOfView(out, fov, near, far) {
+ var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);
+ var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);
+ var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);
+ var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);
+ var xScale = 2.0 / (leftTan + rightTan);
+ var yScale = 2.0 / (upTan + downTan);
+
+ out[0] = xScale;
+ out[1] = 0.0;
+ out[2] = 0.0;
+ out[3] = 0.0;
+ out[4] = 0.0;
+ out[5] = yScale;
+ out[6] = 0.0;
+ out[7] = 0.0;
+ out[8] = -((leftTan - rightTan) * xScale * 0.5);
+ out[9] = (upTan - downTan) * yScale * 0.5;
+ out[10] = far / (near - far);
+ out[11] = -1.0;
+ out[12] = 0.0;
+ out[13] = 0.0;
+ out[14] = far * near / (near - far);
+ out[15] = 0.0;
+ return out;
+}
+
+/**
+ * Generates a orthogonal projection matrix with the given bounds
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {number} left Left bound of the frustum
+ * @param {number} right Right bound of the frustum
+ * @param {number} bottom Bottom bound of the frustum
+ * @param {number} top Top bound of the frustum
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+export function ortho(out, left, right, bottom, top, near, far) {
+ var lr = 1 / (left - right);
+ var bt = 1 / (bottom - top);
+ var nf = 1 / (near - far);
+ out[0] = -2 * lr;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = -2 * bt;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 2 * nf;
+ out[11] = 0;
+ out[12] = (left + right) * lr;
+ out[13] = (top + bottom) * bt;
+ out[14] = (far + near) * nf;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Generates a look-at matrix with the given eye position, focal point, and up axis.
+ * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {vec3} eye Position of the viewer
+ * @param {vec3} center Point the viewer is looking at
+ * @param {vec3} up vec3 pointing up
+ * @returns {mat4} out
+ */
+export function lookAt(out, eye, center, up) {
+ var x0 = void 0,
+ x1 = void 0,
+ x2 = void 0,
+ y0 = void 0,
+ y1 = void 0,
+ y2 = void 0,
+ z0 = void 0,
+ z1 = void 0,
+ z2 = void 0,
+ len = void 0;
+ var eyex = eye[0];
+ var eyey = eye[1];
+ var eyez = eye[2];
+ var upx = up[0];
+ var upy = up[1];
+ var upz = up[2];
+ var centerx = center[0];
+ var centery = center[1];
+ var centerz = center[2];
+
+ if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {
+ return identity(out);
+ }
+
+ z0 = eyex - centerx;
+ z1 = eyey - centery;
+ z2 = eyez - centerz;
+
+ len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
+ z0 *= len;
+ z1 *= len;
+ z2 *= len;
+
+ x0 = upy * z2 - upz * z1;
+ x1 = upz * z0 - upx * z2;
+ x2 = upx * z1 - upy * z0;
+ len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
+ if (!len) {
+ x0 = 0;
+ x1 = 0;
+ x2 = 0;
+ } else {
+ len = 1 / len;
+ x0 *= len;
+ x1 *= len;
+ x2 *= len;
+ }
+
+ y0 = z1 * x2 - z2 * x1;
+ y1 = z2 * x0 - z0 * x2;
+ y2 = z0 * x1 - z1 * x0;
+
+ len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
+ if (!len) {
+ y0 = 0;
+ y1 = 0;
+ y2 = 0;
+ } else {
+ len = 1 / len;
+ y0 *= len;
+ y1 *= len;
+ y2 *= len;
+ }
+
+ out[0] = x0;
+ out[1] = y0;
+ out[2] = z0;
+ out[3] = 0;
+ out[4] = x1;
+ out[5] = y1;
+ out[6] = z1;
+ out[7] = 0;
+ out[8] = x2;
+ out[9] = y2;
+ out[10] = z2;
+ out[11] = 0;
+ out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
+ out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
+ out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Generates a matrix that makes something look at something else.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {vec3} eye Position of the viewer
+ * @param {vec3} center Point the viewer is looking at
+ * @param {vec3} up vec3 pointing up
+ * @returns {mat4} out
+ */
+export function targetTo(out, eye, target, up) {
+ var eyex = eye[0],
+ eyey = eye[1],
+ eyez = eye[2],
+ upx = up[0],
+ upy = up[1],
+ upz = up[2];
+
+ var z0 = eyex - target[0],
+ z1 = eyey - target[1],
+ z2 = eyez - target[2];
+
+ var len = z0 * z0 + z1 * z1 + z2 * z2;
+ if (len > 0) {
+ len = 1 / Math.sqrt(len);
+ z0 *= len;
+ z1 *= len;
+ z2 *= len;
+ }
+
+ var x0 = upy * z2 - upz * z1,
+ x1 = upz * z0 - upx * z2,
+ x2 = upx * z1 - upy * z0;
+
+ len = x0 * x0 + x1 * x1 + x2 * x2;
+ if (len > 0) {
+ len = 1 / Math.sqrt(len);
+ x0 *= len;
+ x1 *= len;
+ x2 *= len;
+ }
+
+ out[0] = x0;
+ out[1] = x1;
+ out[2] = x2;
+ out[3] = 0;
+ out[4] = z1 * x2 - z2 * x1;
+ out[5] = z2 * x0 - z0 * x2;
+ out[6] = z0 * x1 - z1 * x0;
+ out[7] = 0;
+ out[8] = z0;
+ out[9] = z1;
+ out[10] = z2;
+ out[11] = 0;
+ out[12] = eyex;
+ out[13] = eyey;
+ out[14] = eyez;
+ out[15] = 1;
+ return out;
+};
+
+/**
+ * Returns a string representation of a mat4
+ *
+ * @param {mat4} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+export function str(a) {
+ return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat4
+ *
+ * @param {mat4} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+export function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2));
+}
+
+/**
+ * Adds two mat4's
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ out[6] = a[6] + b[6];
+ out[7] = a[7] + b[7];
+ out[8] = a[8] + b[8];
+ out[9] = a[9] + b[9];
+ out[10] = a[10] + b[10];
+ out[11] = a[11] + b[11];
+ out[12] = a[12] + b[12];
+ out[13] = a[13] + b[13];
+ out[14] = a[14] + b[14];
+ out[15] = a[15] + b[15];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ out[4] = a[4] - b[4];
+ out[5] = a[5] - b[5];
+ out[6] = a[6] - b[6];
+ out[7] = a[7] - b[7];
+ out[8] = a[8] - b[8];
+ out[9] = a[9] - b[9];
+ out[10] = a[10] - b[10];
+ out[11] = a[11] - b[11];
+ out[12] = a[12] - b[12];
+ out[13] = a[13] - b[13];
+ out[14] = a[14] - b[14];
+ out[15] = a[15] - b[15];
+ return out;
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat4} out
+ */
+export function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ out[6] = a[6] * b;
+ out[7] = a[7] * b;
+ out[8] = a[8] * b;
+ out[9] = a[9] * b;
+ out[10] = a[10] * b;
+ out[11] = a[11] * b;
+ out[12] = a[12] * b;
+ out[13] = a[13] * b;
+ out[14] = a[14] * b;
+ out[15] = a[15] * b;
+ return out;
+}
+
+/**
+ * Adds two mat4's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat4} out the receiving vector
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat4} out
+ */
+export function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ out[4] = a[4] + b[4] * scale;
+ out[5] = a[5] + b[5] * scale;
+ out[6] = a[6] + b[6] * scale;
+ out[7] = a[7] + b[7] * scale;
+ out[8] = a[8] + b[8] * scale;
+ out[9] = a[9] + b[9] * scale;
+ out[10] = a[10] + b[10] * scale;
+ out[11] = a[11] + b[11] * scale;
+ out[12] = a[12] + b[12] * scale;
+ out[13] = a[13] + b[13] * scale;
+ out[14] = a[14] + b[14] * scale;
+ out[15] = a[15] + b[15] * scale;
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat4} a The first matrix.
+ * @param {mat4} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat4} a The first matrix.
+ * @param {mat4} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var a4 = a[4],
+ a5 = a[5],
+ a6 = a[6],
+ a7 = a[7];
+ var a8 = a[8],
+ a9 = a[9],
+ a10 = a[10],
+ a11 = a[11];
+ var a12 = a[12],
+ a13 = a[13],
+ a14 = a[14],
+ a15 = a[15];
+
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ var b4 = b[4],
+ b5 = b[5],
+ b6 = b[6],
+ b7 = b[7];
+ var b8 = b[8],
+ b9 = b[9],
+ b10 = b[10],
+ b11 = b[11];
+ var b12 = b[12],
+ b13 = b[13],
+ b14 = b[14],
+ b15 = b[15];
+
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));
+}
+
+/**
+ * Alias for {@link mat4.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link mat4.subtract}
+ * @function
+ */
+export var sub = subtract;
\ No newline at end of file
diff --git a/lib/gl-matrix/quat.js b/lib/gl-matrix/quat.js
new file mode 100644
index 00000000..2a874e32
--- /dev/null
+++ b/lib/gl-matrix/quat.js
@@ -0,0 +1,661 @@
+import * as glMatrix from "./common.js";
+import * as mat3 from "./mat3.js";
+import * as vec3 from "./vec3.js";
+import * as vec4 from "./vec4.js";
+
+/**
+ * Quaternion
+ * @module quat
+ */
+
+/**
+ * Creates a new identity quat
+ *
+ * @returns {quat} a new quaternion
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ }
+ out[3] = 1;
+ return out;
+}
+
+/**
+ * Set a quat to the identity quaternion
+ *
+ * @param {quat} out the receiving quaternion
+ * @returns {quat} out
+ */
+export function identity(out) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ return out;
+}
+
+/**
+ * Sets a quat from the given angle and rotation axis,
+ * then returns it.
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {vec3} axis the axis around which to rotate
+ * @param {Number} rad the angle in radians
+ * @returns {quat} out
+ **/
+export function setAxisAngle(out, axis, rad) {
+ rad = rad * 0.5;
+ var s = Math.sin(rad);
+ out[0] = s * axis[0];
+ out[1] = s * axis[1];
+ out[2] = s * axis[2];
+ out[3] = Math.cos(rad);
+ return out;
+}
+
+/**
+ * Gets the rotation axis and angle for a given
+ * quaternion. If a quaternion is created with
+ * setAxisAngle, this method will return the same
+ * values as providied in the original parameter list
+ * OR functionally equivalent values.
+ * Example: The quaternion formed by axis [0, 0, 1] and
+ * angle -90 is the same as the quaternion formed by
+ * [0, 0, 1] and 270. This method favors the latter.
+ * @param {vec3} out_axis Vector receiving the axis of rotation
+ * @param {quat} q Quaternion to be decomposed
+ * @return {Number} Angle, in radians, of the rotation
+ */
+export function getAxisAngle(out_axis, q) {
+ var rad = Math.acos(q[3]) * 2.0;
+ var s = Math.sin(rad / 2.0);
+ if (s > glMatrix.EPSILON) {
+ out_axis[0] = q[0] / s;
+ out_axis[1] = q[1] / s;
+ out_axis[2] = q[2] / s;
+ } else {
+ // If s is zero, return any axis (no rotation - axis does not matter)
+ out_axis[0] = 1;
+ out_axis[1] = 0;
+ out_axis[2] = 0;
+ }
+ return rad;
+}
+
+/**
+ * Multiplies two quat's
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @returns {quat} out
+ */
+export function multiply(out, a, b) {
+ var ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+ var bx = b[0],
+ by = b[1],
+ bz = b[2],
+ bw = b[3];
+
+ out[0] = ax * bw + aw * bx + ay * bz - az * by;
+ out[1] = ay * bw + aw * by + az * bx - ax * bz;
+ out[2] = az * bw + aw * bz + ax * by - ay * bx;
+ out[3] = aw * bw - ax * bx - ay * by - az * bz;
+ return out;
+}
+
+/**
+ * Rotates a quaternion by the given angle about the X axis
+ *
+ * @param {quat} out quat receiving operation result
+ * @param {quat} a quat to rotate
+ * @param {number} rad angle (in radians) to rotate
+ * @returns {quat} out
+ */
+export function rotateX(out, a, rad) {
+ rad *= 0.5;
+
+ var ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+ var bx = Math.sin(rad),
+ bw = Math.cos(rad);
+
+ out[0] = ax * bw + aw * bx;
+ out[1] = ay * bw + az * bx;
+ out[2] = az * bw - ay * bx;
+ out[3] = aw * bw - ax * bx;
+ return out;
+}
+
+/**
+ * Rotates a quaternion by the given angle about the Y axis
+ *
+ * @param {quat} out quat receiving operation result
+ * @param {quat} a quat to rotate
+ * @param {number} rad angle (in radians) to rotate
+ * @returns {quat} out
+ */
+export function rotateY(out, a, rad) {
+ rad *= 0.5;
+
+ var ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+ var by = Math.sin(rad),
+ bw = Math.cos(rad);
+
+ out[0] = ax * bw - az * by;
+ out[1] = ay * bw + aw * by;
+ out[2] = az * bw + ax * by;
+ out[3] = aw * bw - ay * by;
+ return out;
+}
+
+/**
+ * Rotates a quaternion by the given angle about the Z axis
+ *
+ * @param {quat} out quat receiving operation result
+ * @param {quat} a quat to rotate
+ * @param {number} rad angle (in radians) to rotate
+ * @returns {quat} out
+ */
+export function rotateZ(out, a, rad) {
+ rad *= 0.5;
+
+ var ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+ var bz = Math.sin(rad),
+ bw = Math.cos(rad);
+
+ out[0] = ax * bw + ay * bz;
+ out[1] = ay * bw - ax * bz;
+ out[2] = az * bw + aw * bz;
+ out[3] = aw * bw - az * bz;
+ return out;
+}
+
+/**
+ * Calculates the W component of a quat from the X, Y, and Z components.
+ * Assumes that quaternion is 1 unit in length.
+ * Any existing W component will be ignored.
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a quat to calculate W component of
+ * @returns {quat} out
+ */
+export function calculateW(out, a) {
+ var x = a[0],
+ y = a[1],
+ z = a[2];
+
+ out[0] = x;
+ out[1] = y;
+ out[2] = z;
+ out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
+ return out;
+}
+
+/**
+ * Performs a spherical linear interpolation between two quat
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {quat} out
+ */
+export function slerp(out, a, b, t) {
+ // benchmarks:
+ // http://jsperf.com/quaternion-slerp-implementations
+ var ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+ var bx = b[0],
+ by = b[1],
+ bz = b[2],
+ bw = b[3];
+
+ var omega = void 0,
+ cosom = void 0,
+ sinom = void 0,
+ scale0 = void 0,
+ scale1 = void 0;
+
+ // calc cosine
+ cosom = ax * bx + ay * by + az * bz + aw * bw;
+ // adjust signs (if necessary)
+ if (cosom < 0.0) {
+ cosom = -cosom;
+ bx = -bx;
+ by = -by;
+ bz = -bz;
+ bw = -bw;
+ }
+ // calculate coefficients
+ if (1.0 - cosom > glMatrix.EPSILON) {
+ // standard case (slerp)
+ omega = Math.acos(cosom);
+ sinom = Math.sin(omega);
+ scale0 = Math.sin((1.0 - t) * omega) / sinom;
+ scale1 = Math.sin(t * omega) / sinom;
+ } else {
+ // "from" and "to" quaternions are very close
+ // ... so we can do a linear interpolation
+ scale0 = 1.0 - t;
+ scale1 = t;
+ }
+ // calculate final values
+ out[0] = scale0 * ax + scale1 * bx;
+ out[1] = scale0 * ay + scale1 * by;
+ out[2] = scale0 * az + scale1 * bz;
+ out[3] = scale0 * aw + scale1 * bw;
+
+ return out;
+}
+
+/**
+ * Generates a random quaternion
+ *
+ * @param {quat} out the receiving quaternion
+ * @returns {quat} out
+ */
+export function random(out) {
+ // Implementation of http://planning.cs.uiuc.edu/node198.html
+ // TODO: Calling random 3 times is probably not the fastest solution
+ var u1 = glMatrix.RANDOM();
+ var u2 = glMatrix.RANDOM();
+ var u3 = glMatrix.RANDOM();
+
+ var sqrt1MinusU1 = Math.sqrt(1 - u1);
+ var sqrtU1 = Math.sqrt(u1);
+
+ out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
+ out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
+ out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
+ out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
+ return out;
+}
+
+/**
+ * Calculates the inverse of a quat
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a quat to calculate inverse of
+ * @returns {quat} out
+ */
+export function invert(out, a) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
+ var invDot = dot ? 1.0 / dot : 0;
+
+ // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
+
+ out[0] = -a0 * invDot;
+ out[1] = -a1 * invDot;
+ out[2] = -a2 * invDot;
+ out[3] = a3 * invDot;
+ return out;
+}
+
+/**
+ * Calculates the conjugate of a quat
+ * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a quat to calculate conjugate of
+ * @returns {quat} out
+ */
+export function conjugate(out, a) {
+ out[0] = -a[0];
+ out[1] = -a[1];
+ out[2] = -a[2];
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Creates a quaternion from the given 3x3 rotation matrix.
+ *
+ * NOTE: The resultant quaternion is not normalized, so you should be sure
+ * to renormalize the quaternion yourself where necessary.
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {mat3} m rotation matrix
+ * @returns {quat} out
+ * @function
+ */
+export function fromMat3(out, m) {
+ // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
+ // article "Quaternion Calculus and Fast Animation".
+ var fTrace = m[0] + m[4] + m[8];
+ var fRoot = void 0;
+
+ if (fTrace > 0.0) {
+ // |w| > 1/2, may as well choose w > 1/2
+ fRoot = Math.sqrt(fTrace + 1.0); // 2w
+ out[3] = 0.5 * fRoot;
+ fRoot = 0.5 / fRoot; // 1/(4w)
+ out[0] = (m[5] - m[7]) * fRoot;
+ out[1] = (m[6] - m[2]) * fRoot;
+ out[2] = (m[1] - m[3]) * fRoot;
+ } else {
+ // |w| <= 1/2
+ var i = 0;
+ if (m[4] > m[0]) i = 1;
+ if (m[8] > m[i * 3 + i]) i = 2;
+ var j = (i + 1) % 3;
+ var k = (i + 2) % 3;
+
+ fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
+ out[i] = 0.5 * fRoot;
+ fRoot = 0.5 / fRoot;
+ out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
+ out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
+ out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
+ }
+
+ return out;
+}
+
+/**
+ * Creates a quaternion from the given euler angle x, y, z.
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {x} Angle to rotate around X axis in degrees.
+ * @param {y} Angle to rotate around Y axis in degrees.
+ * @param {z} Angle to rotate around Z axis in degrees.
+ * @returns {quat} out
+ * @function
+ */
+export function fromEuler(out, x, y, z) {
+ var halfToRad = 0.5 * Math.PI / 180.0;
+ x *= halfToRad;
+ y *= halfToRad;
+ z *= halfToRad;
+
+ var sx = Math.sin(x);
+ var cx = Math.cos(x);
+ var sy = Math.sin(y);
+ var cy = Math.cos(y);
+ var sz = Math.sin(z);
+ var cz = Math.cos(z);
+
+ out[0] = sx * cy * cz - cx * sy * sz;
+ out[1] = cx * sy * cz + sx * cy * sz;
+ out[2] = cx * cy * sz - sx * sy * cz;
+ out[3] = cx * cy * cz + sx * sy * sz;
+
+ return out;
+}
+
+/**
+ * Returns a string representation of a quatenion
+ *
+ * @param {quat} a vector to represent as a string
+ * @returns {String} string representation of the vector
+ */
+export function str(a) {
+ return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
+}
+
+/**
+ * Creates a new quat initialized with values from an existing quaternion
+ *
+ * @param {quat} a quaternion to clone
+ * @returns {quat} a new quaternion
+ * @function
+ */
+export var clone = vec4.clone;
+
+/**
+ * Creates a new quat initialized with the given values
+ *
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @param {Number} w W component
+ * @returns {quat} a new quaternion
+ * @function
+ */
+export var fromValues = vec4.fromValues;
+
+/**
+ * Copy the values from one quat to another
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the source quaternion
+ * @returns {quat} out
+ * @function
+ */
+export var copy = vec4.copy;
+
+/**
+ * Set the components of a quat to the given values
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @param {Number} w W component
+ * @returns {quat} out
+ * @function
+ */
+export var set = vec4.set;
+
+/**
+ * Adds two quat's
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @returns {quat} out
+ * @function
+ */
+export var add = vec4.add;
+
+/**
+ * Alias for {@link quat.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Scales a quat by a scalar number
+ *
+ * @param {quat} out the receiving vector
+ * @param {quat} a the vector to scale
+ * @param {Number} b amount to scale the vector by
+ * @returns {quat} out
+ * @function
+ */
+export var scale = vec4.scale;
+
+/**
+ * Calculates the dot product of two quat's
+ *
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @returns {Number} dot product of a and b
+ * @function
+ */
+export var dot = vec4.dot;
+
+/**
+ * Performs a linear interpolation between two quat's
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {quat} out
+ * @function
+ */
+export var lerp = vec4.lerp;
+
+/**
+ * Calculates the length of a quat
+ *
+ * @param {quat} a vector to calculate length of
+ * @returns {Number} length of a
+ */
+export var length = vec4.length;
+
+/**
+ * Alias for {@link quat.length}
+ * @function
+ */
+export var len = length;
+
+/**
+ * Calculates the squared length of a quat
+ *
+ * @param {quat} a vector to calculate squared length of
+ * @returns {Number} squared length of a
+ * @function
+ */
+export var squaredLength = vec4.squaredLength;
+
+/**
+ * Alias for {@link quat.squaredLength}
+ * @function
+ */
+export var sqrLen = squaredLength;
+
+/**
+ * Normalize a quat
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a quaternion to normalize
+ * @returns {quat} out
+ * @function
+ */
+export var normalize = vec4.normalize;
+
+/**
+ * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {quat} a The first quaternion.
+ * @param {quat} b The second quaternion.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export var exactEquals = vec4.exactEquals;
+
+/**
+ * Returns whether or not the quaternions have approximately the same elements in the same position.
+ *
+ * @param {quat} a The first vector.
+ * @param {quat} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export var equals = vec4.equals;
+
+/**
+ * Sets a quaternion to represent the shortest rotation from one
+ * vector to another.
+ *
+ * Both vectors are assumed to be unit length.
+ *
+ * @param {quat} out the receiving quaternion.
+ * @param {vec3} a the initial vector
+ * @param {vec3} b the destination vector
+ * @returns {quat} out
+ */
+export var rotationTo = function () {
+ var tmpvec3 = vec3.create();
+ var xUnitVec3 = vec3.fromValues(1, 0, 0);
+ var yUnitVec3 = vec3.fromValues(0, 1, 0);
+
+ return function (out, a, b) {
+ var dot = vec3.dot(a, b);
+ if (dot < -0.999999) {
+ vec3.cross(tmpvec3, xUnitVec3, a);
+ if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);
+ vec3.normalize(tmpvec3, tmpvec3);
+ setAxisAngle(out, tmpvec3, Math.PI);
+ return out;
+ } else if (dot > 0.999999) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ return out;
+ } else {
+ vec3.cross(tmpvec3, a, b);
+ out[0] = tmpvec3[0];
+ out[1] = tmpvec3[1];
+ out[2] = tmpvec3[2];
+ out[3] = 1 + dot;
+ return normalize(out, out);
+ }
+ };
+}();
+
+/**
+ * Performs a spherical linear interpolation with two control points
+ *
+ * @param {quat} out the receiving quaternion
+ * @param {quat} a the first operand
+ * @param {quat} b the second operand
+ * @param {quat} c the third operand
+ * @param {quat} d the fourth operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {quat} out
+ */
+export var sqlerp = function () {
+ var temp1 = create();
+ var temp2 = create();
+
+ return function (out, a, b, c, d, t) {
+ slerp(temp1, a, d, t);
+ slerp(temp2, b, c, t);
+ slerp(out, temp1, temp2, 2 * t * (1 - t));
+
+ return out;
+ };
+}();
+
+/**
+ * Sets the specified quaternion with values corresponding to the given
+ * axes. Each axis is a vec3 and is expected to be unit length and
+ * perpendicular to all other specified axes.
+ *
+ * @param {vec3} view the vector representing the viewing direction
+ * @param {vec3} right the vector representing the local "right" direction
+ * @param {vec3} up the vector representing the local "up" direction
+ * @returns {quat} out
+ */
+export var setAxes = function () {
+ var matr = mat3.create();
+
+ return function (out, view, right, up) {
+ matr[0] = right[0];
+ matr[3] = right[1];
+ matr[6] = right[2];
+
+ matr[1] = up[0];
+ matr[4] = up[1];
+ matr[7] = up[2];
+
+ matr[2] = -view[0];
+ matr[5] = -view[1];
+ matr[8] = -view[2];
+
+ return normalize(out, fromMat3(out, matr));
+ };
+}();
\ No newline at end of file
diff --git a/lib/gl-matrix/quat2.js b/lib/gl-matrix/quat2.js
new file mode 100644
index 00000000..6644c323
--- /dev/null
+++ b/lib/gl-matrix/quat2.js
@@ -0,0 +1,844 @@
+import * as glMatrix from "./common.js";
+import * as quat from "./quat.js";
+import * as mat4 from "./mat4.js";
+
+/**
+ * Dual Quaternion
+ * Format: [real, dual]
+ * Quaternion format: XYZW
+ * Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.
+ * @module quat2
+ */
+
+/**
+ * Creates a new identity dual quat
+ *
+ * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]
+ */
+export function create() {
+ var dq = new glMatrix.ARRAY_TYPE(8);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ dq[0] = 0;
+ dq[1] = 0;
+ dq[2] = 0;
+ dq[4] = 0;
+ dq[5] = 0;
+ dq[6] = 0;
+ dq[7] = 0;
+ }
+ dq[3] = 1;
+ return dq;
+}
+
+/**
+ * Creates a new quat initialized with values from an existing quaternion
+ *
+ * @param {quat2} a dual quaternion to clone
+ * @returns {quat2} new dual quaternion
+ * @function
+ */
+export function clone(a) {
+ var dq = new glMatrix.ARRAY_TYPE(8);
+ dq[0] = a[0];
+ dq[1] = a[1];
+ dq[2] = a[2];
+ dq[3] = a[3];
+ dq[4] = a[4];
+ dq[5] = a[5];
+ dq[6] = a[6];
+ dq[7] = a[7];
+ return dq;
+}
+
+/**
+ * Creates a new dual quat initialized with the given values
+ *
+ * @param {Number} x1 X component
+ * @param {Number} y1 Y component
+ * @param {Number} z1 Z component
+ * @param {Number} w1 W component
+ * @param {Number} x2 X component
+ * @param {Number} y2 Y component
+ * @param {Number} z2 Z component
+ * @param {Number} w2 W component
+ * @returns {quat2} new dual quaternion
+ * @function
+ */
+export function fromValues(x1, y1, z1, w1, x2, y2, z2, w2) {
+ var dq = new glMatrix.ARRAY_TYPE(8);
+ dq[0] = x1;
+ dq[1] = y1;
+ dq[2] = z1;
+ dq[3] = w1;
+ dq[4] = x2;
+ dq[5] = y2;
+ dq[6] = z2;
+ dq[7] = w2;
+ return dq;
+}
+
+/**
+ * Creates a new dual quat from the given values (quat and translation)
+ *
+ * @param {Number} x1 X component
+ * @param {Number} y1 Y component
+ * @param {Number} z1 Z component
+ * @param {Number} w1 W component
+ * @param {Number} x2 X component (translation)
+ * @param {Number} y2 Y component (translation)
+ * @param {Number} z2 Z component (translation)
+ * @returns {quat2} new dual quaternion
+ * @function
+ */
+export function fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {
+ var dq = new glMatrix.ARRAY_TYPE(8);
+ dq[0] = x1;
+ dq[1] = y1;
+ dq[2] = z1;
+ dq[3] = w1;
+ var ax = x2 * 0.5,
+ ay = y2 * 0.5,
+ az = z2 * 0.5;
+ dq[4] = ax * w1 + ay * z1 - az * y1;
+ dq[5] = ay * w1 + az * x1 - ax * z1;
+ dq[6] = az * w1 + ax * y1 - ay * x1;
+ dq[7] = -ax * x1 - ay * y1 - az * z1;
+ return dq;
+}
+
+/**
+ * Creates a dual quat from a quaternion and a translation
+ *
+ * @param {quat2} dual quaternion receiving operation result
+ * @param {quat} q quaternion
+ * @param {vec3} t tranlation vector
+ * @returns {quat2} dual quaternion receiving operation result
+ * @function
+ */
+export function fromRotationTranslation(out, q, t) {
+ var ax = t[0] * 0.5,
+ ay = t[1] * 0.5,
+ az = t[2] * 0.5,
+ bx = q[0],
+ by = q[1],
+ bz = q[2],
+ bw = q[3];
+ out[0] = bx;
+ out[1] = by;
+ out[2] = bz;
+ out[3] = bw;
+ out[4] = ax * bw + ay * bz - az * by;
+ out[5] = ay * bw + az * bx - ax * bz;
+ out[6] = az * bw + ax * by - ay * bx;
+ out[7] = -ax * bx - ay * by - az * bz;
+ return out;
+}
+
+/**
+ * Creates a dual quat from a translation
+ *
+ * @param {quat2} dual quaternion receiving operation result
+ * @param {vec3} t translation vector
+ * @returns {quat2} dual quaternion receiving operation result
+ * @function
+ */
+export function fromTranslation(out, t) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ out[4] = t[0] * 0.5;
+ out[5] = t[1] * 0.5;
+ out[6] = t[2] * 0.5;
+ out[7] = 0;
+ return out;
+}
+
+/**
+ * Creates a dual quat from a quaternion
+ *
+ * @param {quat2} dual quaternion receiving operation result
+ * @param {quat} q the quaternion
+ * @returns {quat2} dual quaternion receiving operation result
+ * @function
+ */
+export function fromRotation(out, q) {
+ out[0] = q[0];
+ out[1] = q[1];
+ out[2] = q[2];
+ out[3] = q[3];
+ out[4] = 0;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ return out;
+}
+
+/**
+ * Creates a new dual quat from a matrix (4x4)
+ *
+ * @param {quat2} out the dual quaternion
+ * @param {mat4} a the matrix
+ * @returns {quat2} dual quat receiving operation result
+ * @function
+ */
+export function fromMat4(out, a) {
+ //TODO Optimize this
+ var outer = quat.create();
+ mat4.getRotation(outer, a);
+ var t = new glMatrix.ARRAY_TYPE(3);
+ mat4.getTranslation(t, a);
+ fromRotationTranslation(out, outer, t);
+ return out;
+}
+
+/**
+ * Copy the values from one dual quat to another
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the source dual quaternion
+ * @returns {quat2} out
+ * @function
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ return out;
+}
+
+/**
+ * Set a dual quat to the identity dual quaternion
+ *
+ * @param {quat2} out the receiving quaternion
+ * @returns {quat2} out
+ */
+export function identity(out) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 1;
+ out[4] = 0;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ return out;
+}
+
+/**
+ * Set the components of a dual quat to the given values
+ *
+ * @param {quat2} out the receiving quaternion
+ * @param {Number} x1 X component
+ * @param {Number} y1 Y component
+ * @param {Number} z1 Z component
+ * @param {Number} w1 W component
+ * @param {Number} x2 X component
+ * @param {Number} y2 Y component
+ * @param {Number} z2 Z component
+ * @param {Number} w2 W component
+ * @returns {quat2} out
+ * @function
+ */
+export function set(out, x1, y1, z1, w1, x2, y2, z2, w2) {
+ out[0] = x1;
+ out[1] = y1;
+ out[2] = z1;
+ out[3] = w1;
+
+ out[4] = x2;
+ out[5] = y2;
+ out[6] = z2;
+ out[7] = w2;
+ return out;
+}
+
+/**
+ * Gets the real part of a dual quat
+ * @param {quat} out real part
+ * @param {quat2} a Dual Quaternion
+ * @return {quat} real part
+ */
+export var getReal = quat.copy;
+
+/**
+ * Gets the dual part of a dual quat
+ * @param {quat} out dual part
+ * @param {quat2} a Dual Quaternion
+ * @return {quat} dual part
+ */
+export function getDual(out, a) {
+ out[0] = a[4];
+ out[1] = a[5];
+ out[2] = a[6];
+ out[3] = a[7];
+ return out;
+}
+
+/**
+ * Set the real component of a dual quat to the given quaternion
+ *
+ * @param {quat2} out the receiving quaternion
+ * @param {quat} q a quaternion representing the real part
+ * @returns {quat2} out
+ * @function
+ */
+export var setReal = quat.copy;
+
+/**
+ * Set the dual component of a dual quat to the given quaternion
+ *
+ * @param {quat2} out the receiving quaternion
+ * @param {quat} q a quaternion representing the dual part
+ * @returns {quat2} out
+ * @function
+ */
+export function setDual(out, q) {
+ out[4] = q[0];
+ out[5] = q[1];
+ out[6] = q[2];
+ out[7] = q[3];
+ return out;
+}
+
+/**
+ * Gets the translation of a normalized dual quat
+ * @param {vec3} out translation
+ * @param {quat2} a Dual Quaternion to be decomposed
+ * @return {vec3} translation
+ */
+export function getTranslation(out, a) {
+ var ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7],
+ bx = -a[0],
+ by = -a[1],
+ bz = -a[2],
+ bw = a[3];
+ out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
+ out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
+ out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
+ return out;
+}
+
+/**
+ * Translates a dual quat by the given vector
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to translate
+ * @param {vec3} v vector to translate by
+ * @returns {quat2} out
+ */
+export function translate(out, a, v) {
+ var ax1 = a[0],
+ ay1 = a[1],
+ az1 = a[2],
+ aw1 = a[3],
+ bx1 = v[0] * 0.5,
+ by1 = v[1] * 0.5,
+ bz1 = v[2] * 0.5,
+ ax2 = a[4],
+ ay2 = a[5],
+ az2 = a[6],
+ aw2 = a[7];
+ out[0] = ax1;
+ out[1] = ay1;
+ out[2] = az1;
+ out[3] = aw1;
+ out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;
+ out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;
+ out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;
+ out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;
+ return out;
+}
+
+/**
+ * Rotates a dual quat around the X axis
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to rotate
+ * @param {number} rad how far should the rotation be
+ * @returns {quat2} out
+ */
+export function rotateX(out, a, rad) {
+ var bx = -a[0],
+ by = -a[1],
+ bz = -a[2],
+ bw = a[3],
+ ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7],
+ ax1 = ax * bw + aw * bx + ay * bz - az * by,
+ ay1 = ay * bw + aw * by + az * bx - ax * bz,
+ az1 = az * bw + aw * bz + ax * by - ay * bx,
+ aw1 = aw * bw - ax * bx - ay * by - az * bz;
+ quat.rotateX(out, a, rad);
+ bx = out[0];
+ by = out[1];
+ bz = out[2];
+ bw = out[3];
+ out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+ out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+ out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+ out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+ return out;
+}
+
+/**
+ * Rotates a dual quat around the Y axis
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to rotate
+ * @param {number} rad how far should the rotation be
+ * @returns {quat2} out
+ */
+export function rotateY(out, a, rad) {
+ var bx = -a[0],
+ by = -a[1],
+ bz = -a[2],
+ bw = a[3],
+ ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7],
+ ax1 = ax * bw + aw * bx + ay * bz - az * by,
+ ay1 = ay * bw + aw * by + az * bx - ax * bz,
+ az1 = az * bw + aw * bz + ax * by - ay * bx,
+ aw1 = aw * bw - ax * bx - ay * by - az * bz;
+ quat.rotateY(out, a, rad);
+ bx = out[0];
+ by = out[1];
+ bz = out[2];
+ bw = out[3];
+ out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+ out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+ out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+ out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+ return out;
+}
+
+/**
+ * Rotates a dual quat around the Z axis
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to rotate
+ * @param {number} rad how far should the rotation be
+ * @returns {quat2} out
+ */
+export function rotateZ(out, a, rad) {
+ var bx = -a[0],
+ by = -a[1],
+ bz = -a[2],
+ bw = a[3],
+ ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7],
+ ax1 = ax * bw + aw * bx + ay * bz - az * by,
+ ay1 = ay * bw + aw * by + az * bx - ax * bz,
+ az1 = az * bw + aw * bz + ax * by - ay * bx,
+ aw1 = aw * bw - ax * bx - ay * by - az * bz;
+ quat.rotateZ(out, a, rad);
+ bx = out[0];
+ by = out[1];
+ bz = out[2];
+ bw = out[3];
+ out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+ out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+ out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+ out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+ return out;
+}
+
+/**
+ * Rotates a dual quat by a given quaternion (a * q)
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to rotate
+ * @param {quat} q quaternion to rotate by
+ * @returns {quat2} out
+ */
+export function rotateByQuatAppend(out, a, q) {
+ var qx = q[0],
+ qy = q[1],
+ qz = q[2],
+ qw = q[3],
+ ax = a[0],
+ ay = a[1],
+ az = a[2],
+ aw = a[3];
+
+ out[0] = ax * qw + aw * qx + ay * qz - az * qy;
+ out[1] = ay * qw + aw * qy + az * qx - ax * qz;
+ out[2] = az * qw + aw * qz + ax * qy - ay * qx;
+ out[3] = aw * qw - ax * qx - ay * qy - az * qz;
+ ax = a[4];
+ ay = a[5];
+ az = a[6];
+ aw = a[7];
+ out[4] = ax * qw + aw * qx + ay * qz - az * qy;
+ out[5] = ay * qw + aw * qy + az * qx - ax * qz;
+ out[6] = az * qw + aw * qz + ax * qy - ay * qx;
+ out[7] = aw * qw - ax * qx - ay * qy - az * qz;
+ return out;
+}
+
+/**
+ * Rotates a dual quat by a given quaternion (q * a)
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat} q quaternion to rotate by
+ * @param {quat2} a the dual quaternion to rotate
+ * @returns {quat2} out
+ */
+export function rotateByQuatPrepend(out, q, a) {
+ var qx = q[0],
+ qy = q[1],
+ qz = q[2],
+ qw = q[3],
+ bx = a[0],
+ by = a[1],
+ bz = a[2],
+ bw = a[3];
+
+ out[0] = qx * bw + qw * bx + qy * bz - qz * by;
+ out[1] = qy * bw + qw * by + qz * bx - qx * bz;
+ out[2] = qz * bw + qw * bz + qx * by - qy * bx;
+ out[3] = qw * bw - qx * bx - qy * by - qz * bz;
+ bx = a[4];
+ by = a[5];
+ bz = a[6];
+ bw = a[7];
+ out[4] = qx * bw + qw * bx + qy * bz - qz * by;
+ out[5] = qy * bw + qw * by + qz * bx - qx * bz;
+ out[6] = qz * bw + qw * bz + qx * by - qy * bx;
+ out[7] = qw * bw - qx * bx - qy * by - qz * bz;
+ return out;
+}
+
+/**
+ * Rotates a dual quat around a given axis. Does the normalisation automatically
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the dual quaternion to rotate
+ * @param {vec3} axis the axis to rotate around
+ * @param {Number} rad how far the rotation should be
+ * @returns {quat2} out
+ */
+export function rotateAroundAxis(out, a, axis, rad) {
+ //Special case for rad = 0
+ if (Math.abs(rad) < glMatrix.EPSILON) {
+ return copy(out, a);
+ }
+ var axisLength = Math.sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
+
+ rad = rad * 0.5;
+ var s = Math.sin(rad);
+ var bx = s * axis[0] / axisLength;
+ var by = s * axis[1] / axisLength;
+ var bz = s * axis[2] / axisLength;
+ var bw = Math.cos(rad);
+
+ var ax1 = a[0],
+ ay1 = a[1],
+ az1 = a[2],
+ aw1 = a[3];
+ out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+ out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+ out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+ out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+
+ var ax = a[4],
+ ay = a[5],
+ az = a[6],
+ aw = a[7];
+ out[4] = ax * bw + aw * bx + ay * bz - az * by;
+ out[5] = ay * bw + aw * by + az * bx - ax * bz;
+ out[6] = az * bw + aw * bz + ax * by - ay * bx;
+ out[7] = aw * bw - ax * bx - ay * by - az * bz;
+
+ return out;
+}
+
+/**
+ * Adds two dual quat's
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the first operand
+ * @param {quat2} b the second operand
+ * @returns {quat2} out
+ * @function
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ out[6] = a[6] + b[6];
+ out[7] = a[7] + b[7];
+ return out;
+}
+
+/**
+ * Multiplies two dual quat's
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a the first operand
+ * @param {quat2} b the second operand
+ * @returns {quat2} out
+ */
+export function multiply(out, a, b) {
+ var ax0 = a[0],
+ ay0 = a[1],
+ az0 = a[2],
+ aw0 = a[3],
+ bx1 = b[4],
+ by1 = b[5],
+ bz1 = b[6],
+ bw1 = b[7],
+ ax1 = a[4],
+ ay1 = a[5],
+ az1 = a[6],
+ aw1 = a[7],
+ bx0 = b[0],
+ by0 = b[1],
+ bz0 = b[2],
+ bw0 = b[3];
+ out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;
+ out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;
+ out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;
+ out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;
+ out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;
+ out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;
+ out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;
+ out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;
+ return out;
+}
+
+/**
+ * Alias for {@link quat2.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Scales a dual quat by a scalar number
+ *
+ * @param {quat2} out the receiving dual quat
+ * @param {quat2} a the dual quat to scale
+ * @param {Number} b amount to scale the dual quat by
+ * @returns {quat2} out
+ * @function
+ */
+export function scale(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ out[6] = a[6] * b;
+ out[7] = a[7] * b;
+ return out;
+}
+
+/**
+ * Calculates the dot product of two dual quat's (The dot product of the real parts)
+ *
+ * @param {quat2} a the first operand
+ * @param {quat2} b the second operand
+ * @returns {Number} dot product of a and b
+ * @function
+ */
+export var dot = quat.dot;
+
+/**
+ * Performs a linear interpolation between two dual quats's
+ * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)
+ *
+ * @param {quat2} out the receiving dual quat
+ * @param {quat2} a the first operand
+ * @param {quat2} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {quat2} out
+ */
+export function lerp(out, a, b, t) {
+ var mt = 1 - t;
+ if (dot(a, b) < 0) t = -t;
+
+ out[0] = a[0] * mt + b[0] * t;
+ out[1] = a[1] * mt + b[1] * t;
+ out[2] = a[2] * mt + b[2] * t;
+ out[3] = a[3] * mt + b[3] * t;
+ out[4] = a[4] * mt + b[4] * t;
+ out[5] = a[5] * mt + b[5] * t;
+ out[6] = a[6] * mt + b[6] * t;
+ out[7] = a[7] * mt + b[7] * t;
+
+ return out;
+}
+
+/**
+ * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a dual quat to calculate inverse of
+ * @returns {quat2} out
+ */
+export function invert(out, a) {
+ var sqlen = squaredLength(a);
+ out[0] = -a[0] / sqlen;
+ out[1] = -a[1] / sqlen;
+ out[2] = -a[2] / sqlen;
+ out[3] = a[3] / sqlen;
+ out[4] = -a[4] / sqlen;
+ out[5] = -a[5] / sqlen;
+ out[6] = -a[6] / sqlen;
+ out[7] = a[7] / sqlen;
+ return out;
+}
+
+/**
+ * Calculates the conjugate of a dual quat
+ * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.
+ *
+ * @param {quat2} out the receiving quaternion
+ * @param {quat2} a quat to calculate conjugate of
+ * @returns {quat2} out
+ */
+export function conjugate(out, a) {
+ out[0] = -a[0];
+ out[1] = -a[1];
+ out[2] = -a[2];
+ out[3] = a[3];
+ out[4] = -a[4];
+ out[5] = -a[5];
+ out[6] = -a[6];
+ out[7] = a[7];
+ return out;
+}
+
+/**
+ * Calculates the length of a dual quat
+ *
+ * @param {quat2} a dual quat to calculate length of
+ * @returns {Number} length of a
+ * @function
+ */
+export var length = quat.length;
+
+/**
+ * Alias for {@link quat2.length}
+ * @function
+ */
+export var len = length;
+
+/**
+ * Calculates the squared length of a dual quat
+ *
+ * @param {quat2} a dual quat to calculate squared length of
+ * @returns {Number} squared length of a
+ * @function
+ */
+export var squaredLength = quat.squaredLength;
+
+/**
+ * Alias for {@link quat2.squaredLength}
+ * @function
+ */
+export var sqrLen = squaredLength;
+
+/**
+ * Normalize a dual quat
+ *
+ * @param {quat2} out the receiving dual quaternion
+ * @param {quat2} a dual quaternion to normalize
+ * @returns {quat2} out
+ * @function
+ */
+export function normalize(out, a) {
+ var magnitude = squaredLength(a);
+ if (magnitude > 0) {
+ magnitude = Math.sqrt(magnitude);
+
+ var a0 = a[0] / magnitude;
+ var a1 = a[1] / magnitude;
+ var a2 = a[2] / magnitude;
+ var a3 = a[3] / magnitude;
+
+ var b0 = a[4];
+ var b1 = a[5];
+ var b2 = a[6];
+ var b3 = a[7];
+
+ var a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;
+
+ out[0] = a0;
+ out[1] = a1;
+ out[2] = a2;
+ out[3] = a3;
+
+ out[4] = (b0 - a0 * a_dot_b) / magnitude;
+ out[5] = (b1 - a1 * a_dot_b) / magnitude;
+ out[6] = (b2 - a2 * a_dot_b) / magnitude;
+ out[7] = (b3 - a3 * a_dot_b) / magnitude;
+ }
+ return out;
+}
+
+/**
+ * Returns a string representation of a dual quatenion
+ *
+ * @param {quat2} a dual quaternion to represent as a string
+ * @returns {String} string representation of the dual quat
+ */
+export function str(a) {
+ return 'quat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ')';
+}
+
+/**
+ * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {quat2} a the first dual quaternion.
+ * @param {quat2} b the second dual quaternion.
+ * @returns {Boolean} true if the dual quaternions are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];
+}
+
+/**
+ * Returns whether or not the dual quaternions have approximately the same elements in the same position.
+ *
+ * @param {quat2} a the first dual quat.
+ * @param {quat2} b the second dual quat.
+ * @returns {Boolean} true if the dual quats are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5],
+ a6 = a[6],
+ a7 = a[7];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3],
+ b4 = b[4],
+ b5 = b[5],
+ b6 = b[6],
+ b7 = b[7];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));
+}
\ No newline at end of file
diff --git a/lib/gl-matrix/vec2.js b/lib/gl-matrix/vec2.js
new file mode 100644
index 00000000..952af3e9
--- /dev/null
+++ b/lib/gl-matrix/vec2.js
@@ -0,0 +1,625 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 2 Dimensional Vector
+ * @module vec2
+ */
+
+/**
+ * Creates a new, empty vec2
+ *
+ * @returns {vec2} a new 2D vector
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(2);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[0] = 0;
+ out[1] = 0;
+ }
+ return out;
+}
+
+/**
+ * Creates a new vec2 initialized with values from an existing vector
+ *
+ * @param {vec2} a vector to clone
+ * @returns {vec2} a new 2D vector
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(2);
+ out[0] = a[0];
+ out[1] = a[1];
+ return out;
+}
+
+/**
+ * Creates a new vec2 initialized with the given values
+ *
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @returns {vec2} a new 2D vector
+ */
+export function fromValues(x, y) {
+ var out = new glMatrix.ARRAY_TYPE(2);
+ out[0] = x;
+ out[1] = y;
+ return out;
+}
+
+/**
+ * Copy the values from one vec2 to another
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the source vector
+ * @returns {vec2} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ return out;
+}
+
+/**
+ * Set the components of a vec2 to the given values
+ *
+ * @param {vec2} out the receiving vector
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @returns {vec2} out
+ */
+export function set(out, x, y) {
+ out[0] = x;
+ out[1] = y;
+ return out;
+}
+
+/**
+ * Adds two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ return out;
+}
+
+/**
+ * Subtracts vector b from vector a
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ return out;
+}
+
+/**
+ * Multiplies two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function multiply(out, a, b) {
+ out[0] = a[0] * b[0];
+ out[1] = a[1] * b[1];
+ return out;
+}
+
+/**
+ * Divides two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function divide(out, a, b) {
+ out[0] = a[0] / b[0];
+ out[1] = a[1] / b[1];
+ return out;
+}
+
+/**
+ * Math.ceil the components of a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to ceil
+ * @returns {vec2} out
+ */
+export function ceil(out, a) {
+ out[0] = Math.ceil(a[0]);
+ out[1] = Math.ceil(a[1]);
+ return out;
+}
+
+/**
+ * Math.floor the components of a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to floor
+ * @returns {vec2} out
+ */
+export function floor(out, a) {
+ out[0] = Math.floor(a[0]);
+ out[1] = Math.floor(a[1]);
+ return out;
+}
+
+/**
+ * Returns the minimum of two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function min(out, a, b) {
+ out[0] = Math.min(a[0], b[0]);
+ out[1] = Math.min(a[1], b[1]);
+ return out;
+}
+
+/**
+ * Returns the maximum of two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec2} out
+ */
+export function max(out, a, b) {
+ out[0] = Math.max(a[0], b[0]);
+ out[1] = Math.max(a[1], b[1]);
+ return out;
+}
+
+/**
+ * Math.round the components of a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to round
+ * @returns {vec2} out
+ */
+export function round(out, a) {
+ out[0] = Math.round(a[0]);
+ out[1] = Math.round(a[1]);
+ return out;
+}
+
+/**
+ * Scales a vec2 by a scalar number
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the vector to scale
+ * @param {Number} b amount to scale the vector by
+ * @returns {vec2} out
+ */
+export function scale(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ return out;
+}
+
+/**
+ * Adds two vec2's after scaling the second operand by a scalar value
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @param {Number} scale the amount to scale b by before adding
+ * @returns {vec2} out
+ */
+export function scaleAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ return out;
+}
+
+/**
+ * Calculates the euclidian distance between two vec2's
+ *
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {Number} distance between a and b
+ */
+export function distance(a, b) {
+ var x = b[0] - a[0],
+ y = b[1] - a[1];
+ return Math.sqrt(x * x + y * y);
+}
+
+/**
+ * Calculates the squared euclidian distance between two vec2's
+ *
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {Number} squared distance between a and b
+ */
+export function squaredDistance(a, b) {
+ var x = b[0] - a[0],
+ y = b[1] - a[1];
+ return x * x + y * y;
+}
+
+/**
+ * Calculates the length of a vec2
+ *
+ * @param {vec2} a vector to calculate length of
+ * @returns {Number} length of a
+ */
+export function length(a) {
+ var x = a[0],
+ y = a[1];
+ return Math.sqrt(x * x + y * y);
+}
+
+/**
+ * Calculates the squared length of a vec2
+ *
+ * @param {vec2} a vector to calculate squared length of
+ * @returns {Number} squared length of a
+ */
+export function squaredLength(a) {
+ var x = a[0],
+ y = a[1];
+ return x * x + y * y;
+}
+
+/**
+ * Negates the components of a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to negate
+ * @returns {vec2} out
+ */
+export function negate(out, a) {
+ out[0] = -a[0];
+ out[1] = -a[1];
+ return out;
+}
+
+/**
+ * Returns the inverse of the components of a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to invert
+ * @returns {vec2} out
+ */
+export function inverse(out, a) {
+ out[0] = 1.0 / a[0];
+ out[1] = 1.0 / a[1];
+ return out;
+}
+
+/**
+ * Normalize a vec2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a vector to normalize
+ * @returns {vec2} out
+ */
+export function normalize(out, a) {
+ var x = a[0],
+ y = a[1];
+ var len = x * x + y * y;
+ if (len > 0) {
+ //TODO: evaluate use of glm_invsqrt here?
+ len = 1 / Math.sqrt(len);
+ out[0] = a[0] * len;
+ out[1] = a[1] * len;
+ }
+ return out;
+}
+
+/**
+ * Calculates the dot product of two vec2's
+ *
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {Number} dot product of a and b
+ */
+export function dot(a, b) {
+ return a[0] * b[0] + a[1] * b[1];
+}
+
+/**
+ * Computes the cross product of two vec2's
+ * Note that the cross product must by definition produce a 3D vector
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @returns {vec3} out
+ */
+export function cross(out, a, b) {
+ var z = a[0] * b[1] - a[1] * b[0];
+ out[0] = out[1] = 0;
+ out[2] = z;
+ return out;
+}
+
+/**
+ * Performs a linear interpolation between two vec2's
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the first operand
+ * @param {vec2} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {vec2} out
+ */
+export function lerp(out, a, b, t) {
+ var ax = a[0],
+ ay = a[1];
+ out[0] = ax + t * (b[0] - ax);
+ out[1] = ay + t * (b[1] - ay);
+ return out;
+}
+
+/**
+ * Generates a random vector with the given scale
+ *
+ * @param {vec2} out the receiving vector
+ * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+ * @returns {vec2} out
+ */
+export function random(out, scale) {
+ scale = scale || 1.0;
+ var r = glMatrix.RANDOM() * 2.0 * Math.PI;
+ out[0] = Math.cos(r) * scale;
+ out[1] = Math.sin(r) * scale;
+ return out;
+}
+
+/**
+ * Transforms the vec2 with a mat2
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the vector to transform
+ * @param {mat2} m matrix to transform with
+ * @returns {vec2} out
+ */
+export function transformMat2(out, a, m) {
+ var x = a[0],
+ y = a[1];
+ out[0] = m[0] * x + m[2] * y;
+ out[1] = m[1] * x + m[3] * y;
+ return out;
+}
+
+/**
+ * Transforms the vec2 with a mat2d
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the vector to transform
+ * @param {mat2d} m matrix to transform with
+ * @returns {vec2} out
+ */
+export function transformMat2d(out, a, m) {
+ var x = a[0],
+ y = a[1];
+ out[0] = m[0] * x + m[2] * y + m[4];
+ out[1] = m[1] * x + m[3] * y + m[5];
+ return out;
+}
+
+/**
+ * Transforms the vec2 with a mat3
+ * 3rd vector component is implicitly '1'
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the vector to transform
+ * @param {mat3} m matrix to transform with
+ * @returns {vec2} out
+ */
+export function transformMat3(out, a, m) {
+ var x = a[0],
+ y = a[1];
+ out[0] = m[0] * x + m[3] * y + m[6];
+ out[1] = m[1] * x + m[4] * y + m[7];
+ return out;
+}
+
+/**
+ * Transforms the vec2 with a mat4
+ * 3rd vector component is implicitly '0'
+ * 4th vector component is implicitly '1'
+ *
+ * @param {vec2} out the receiving vector
+ * @param {vec2} a the vector to transform
+ * @param {mat4} m matrix to transform with
+ * @returns {vec2} out
+ */
+export function transformMat4(out, a, m) {
+ var x = a[0];
+ var y = a[1];
+ out[0] = m[0] * x + m[4] * y + m[12];
+ out[1] = m[1] * x + m[5] * y + m[13];
+ return out;
+}
+
+/**
+ * Rotate a 2D vector
+ * @param {vec2} out The receiving vec2
+ * @param {vec2} a The vec2 point to rotate
+ * @param {vec2} b The origin of the rotation
+ * @param {Number} c The angle of rotation
+ * @returns {vec2} out
+ */
+export function rotate(out, a, b, c) {
+ //Translate point to the origin
+ var p0 = a[0] - b[0],
+ p1 = a[1] - b[1],
+ sinC = Math.sin(c),
+ cosC = Math.cos(c);
+
+ //perform rotation and translate to correct position
+ out[0] = p0 * cosC - p1 * sinC + b[0];
+ out[1] = p0 * sinC + p1 * cosC + b[1];
+
+ return out;
+}
+
+/**
+ * Get the angle between two 2D vectors
+ * @param {vec2} a The first operand
+ * @param {vec2} b The second operand
+ * @returns {Number} The angle in radians
+ */
+export function angle(a, b) {
+ var x1 = a[0],
+ y1 = a[1],
+ x2 = b[0],
+ y2 = b[1];
+
+ var len1 = x1 * x1 + y1 * y1;
+ if (len1 > 0) {
+ //TODO: evaluate use of glm_invsqrt here?
+ len1 = 1 / Math.sqrt(len1);
+ }
+
+ var len2 = x2 * x2 + y2 * y2;
+ if (len2 > 0) {
+ //TODO: evaluate use of glm_invsqrt here?
+ len2 = 1 / Math.sqrt(len2);
+ }
+
+ var cosine = (x1 * x2 + y1 * y2) * len1 * len2;
+
+ if (cosine > 1.0) {
+ return 0;
+ } else if (cosine < -1.0) {
+ return Math.PI;
+ } else {
+ return Math.acos(cosine);
+ }
+}
+
+/**
+ * Returns a string representation of a vector
+ *
+ * @param {vec2} a vector to represent as a string
+ * @returns {String} string representation of the vector
+ */
+export function str(a) {
+ return 'vec2(' + a[0] + ', ' + a[1] + ')';
+}
+
+/**
+ * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)
+ *
+ * @param {vec2} a The first vector.
+ * @param {vec2} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1];
+}
+
+/**
+ * Returns whether or not the vectors have approximately the same elements in the same position.
+ *
+ * @param {vec2} a The first vector.
+ * @param {vec2} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1];
+ var b0 = b[0],
+ b1 = b[1];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));
+}
+
+/**
+ * Alias for {@link vec2.length}
+ * @function
+ */
+export var len = length;
+
+/**
+ * Alias for {@link vec2.subtract}
+ * @function
+ */
+export var sub = subtract;
+
+/**
+ * Alias for {@link vec2.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link vec2.divide}
+ * @function
+ */
+export var div = divide;
+
+/**
+ * Alias for {@link vec2.distance}
+ * @function
+ */
+export var dist = distance;
+
+/**
+ * Alias for {@link vec2.squaredDistance}
+ * @function
+ */
+export var sqrDist = squaredDistance;
+
+/**
+ * Alias for {@link vec2.squaredLength}
+ * @function
+ */
+export var sqrLen = squaredLength;
+
+/**
+ * Perform some operation over an array of vec2s.
+ *
+ * @param {Array} a the array of vectors to iterate over
+ * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
+ * @param {Number} offset Number of elements to skip at the beginning of the array
+ * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
+ * @param {Function} fn Function to call for each vector in the array
+ * @param {Object} [arg] additional argument to pass to fn
+ * @returns {Array} a
+ * @function
+ */
+export var forEach = function () {
+ var vec = create();
+
+ return function (a, stride, offset, count, fn, arg) {
+ var i = void 0,
+ l = void 0;
+ if (!stride) {
+ stride = 2;
+ }
+
+ if (!offset) {
+ offset = 0;
+ }
+
+ if (count) {
+ l = Math.min(count * stride + offset, a.length);
+ } else {
+ l = a.length;
+ }
+
+ for (i = offset; i < l; i += stride) {
+ vec[0] = a[i];vec[1] = a[i + 1];
+ fn(vec, vec, arg);
+ a[i] = vec[0];a[i + 1] = vec[1];
+ }
+
+ return a;
+ };
+}();
\ No newline at end of file
diff --git a/lib/gl-matrix/vec3.js b/lib/gl-matrix/vec3.js
new file mode 100644
index 00000000..778723be
--- /dev/null
+++ b/lib/gl-matrix/vec3.js
@@ -0,0 +1,787 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 3 Dimensional Vector
+ * @module vec3
+ */
+
+/**
+ * Creates a new, empty vec3
+ *
+ * @returns {vec3} a new 3D vector
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(3);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ }
+ return out;
+}
+
+/**
+ * Creates a new vec3 initialized with values from an existing vector
+ *
+ * @param {vec3} a vector to clone
+ * @returns {vec3} a new 3D vector
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(3);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ return out;
+}
+
+/**
+ * Calculates the length of a vec3
+ *
+ * @param {vec3} a vector to calculate length of
+ * @returns {Number} length of a
+ */
+export function length(a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ return Math.sqrt(x * x + y * y + z * z);
+}
+
+/**
+ * Creates a new vec3 initialized with the given values
+ *
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @returns {vec3} a new 3D vector
+ */
+export function fromValues(x, y, z) {
+ var out = new glMatrix.ARRAY_TYPE(3);
+ out[0] = x;
+ out[1] = y;
+ out[2] = z;
+ return out;
+}
+
+/**
+ * Copy the values from one vec3 to another
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the source vector
+ * @returns {vec3} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ return out;
+}
+
+/**
+ * Set the components of a vec3 to the given values
+ *
+ * @param {vec3} out the receiving vector
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @returns {vec3} out
+ */
+export function set(out, x, y, z) {
+ out[0] = x;
+ out[1] = y;
+ out[2] = z;
+ return out;
+}
+
+/**
+ * Adds two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ return out;
+}
+
+/**
+ * Subtracts vector b from vector a
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ return out;
+}
+
+/**
+ * Multiplies two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function multiply(out, a, b) {
+ out[0] = a[0] * b[0];
+ out[1] = a[1] * b[1];
+ out[2] = a[2] * b[2];
+ return out;
+}
+
+/**
+ * Divides two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function divide(out, a, b) {
+ out[0] = a[0] / b[0];
+ out[1] = a[1] / b[1];
+ out[2] = a[2] / b[2];
+ return out;
+}
+
+/**
+ * Math.ceil the components of a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to ceil
+ * @returns {vec3} out
+ */
+export function ceil(out, a) {
+ out[0] = Math.ceil(a[0]);
+ out[1] = Math.ceil(a[1]);
+ out[2] = Math.ceil(a[2]);
+ return out;
+}
+
+/**
+ * Math.floor the components of a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to floor
+ * @returns {vec3} out
+ */
+export function floor(out, a) {
+ out[0] = Math.floor(a[0]);
+ out[1] = Math.floor(a[1]);
+ out[2] = Math.floor(a[2]);
+ return out;
+}
+
+/**
+ * Returns the minimum of two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function min(out, a, b) {
+ out[0] = Math.min(a[0], b[0]);
+ out[1] = Math.min(a[1], b[1]);
+ out[2] = Math.min(a[2], b[2]);
+ return out;
+}
+
+/**
+ * Returns the maximum of two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function max(out, a, b) {
+ out[0] = Math.max(a[0], b[0]);
+ out[1] = Math.max(a[1], b[1]);
+ out[2] = Math.max(a[2], b[2]);
+ return out;
+}
+
+/**
+ * Math.round the components of a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to round
+ * @returns {vec3} out
+ */
+export function round(out, a) {
+ out[0] = Math.round(a[0]);
+ out[1] = Math.round(a[1]);
+ out[2] = Math.round(a[2]);
+ return out;
+}
+
+/**
+ * Scales a vec3 by a scalar number
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the vector to scale
+ * @param {Number} b amount to scale the vector by
+ * @returns {vec3} out
+ */
+export function scale(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ return out;
+}
+
+/**
+ * Adds two vec3's after scaling the second operand by a scalar value
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @param {Number} scale the amount to scale b by before adding
+ * @returns {vec3} out
+ */
+export function scaleAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ return out;
+}
+
+/**
+ * Calculates the euclidian distance between two vec3's
+ *
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {Number} distance between a and b
+ */
+export function distance(a, b) {
+ var x = b[0] - a[0];
+ var y = b[1] - a[1];
+ var z = b[2] - a[2];
+ return Math.sqrt(x * x + y * y + z * z);
+}
+
+/**
+ * Calculates the squared euclidian distance between two vec3's
+ *
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {Number} squared distance between a and b
+ */
+export function squaredDistance(a, b) {
+ var x = b[0] - a[0];
+ var y = b[1] - a[1];
+ var z = b[2] - a[2];
+ return x * x + y * y + z * z;
+}
+
+/**
+ * Calculates the squared length of a vec3
+ *
+ * @param {vec3} a vector to calculate squared length of
+ * @returns {Number} squared length of a
+ */
+export function squaredLength(a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ return x * x + y * y + z * z;
+}
+
+/**
+ * Negates the components of a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to negate
+ * @returns {vec3} out
+ */
+export function negate(out, a) {
+ out[0] = -a[0];
+ out[1] = -a[1];
+ out[2] = -a[2];
+ return out;
+}
+
+/**
+ * Returns the inverse of the components of a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to invert
+ * @returns {vec3} out
+ */
+export function inverse(out, a) {
+ out[0] = 1.0 / a[0];
+ out[1] = 1.0 / a[1];
+ out[2] = 1.0 / a[2];
+ return out;
+}
+
+/**
+ * Normalize a vec3
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a vector to normalize
+ * @returns {vec3} out
+ */
+export function normalize(out, a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ var len = x * x + y * y + z * z;
+ if (len > 0) {
+ //TODO: evaluate use of glm_invsqrt here?
+ len = 1 / Math.sqrt(len);
+ out[0] = a[0] * len;
+ out[1] = a[1] * len;
+ out[2] = a[2] * len;
+ }
+ return out;
+}
+
+/**
+ * Calculates the dot product of two vec3's
+ *
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {Number} dot product of a and b
+ */
+export function dot(a, b) {
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+}
+
+/**
+ * Computes the cross product of two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @returns {vec3} out
+ */
+export function cross(out, a, b) {
+ var ax = a[0],
+ ay = a[1],
+ az = a[2];
+ var bx = b[0],
+ by = b[1],
+ bz = b[2];
+
+ out[0] = ay * bz - az * by;
+ out[1] = az * bx - ax * bz;
+ out[2] = ax * by - ay * bx;
+ return out;
+}
+
+/**
+ * Performs a linear interpolation between two vec3's
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {vec3} out
+ */
+export function lerp(out, a, b, t) {
+ var ax = a[0];
+ var ay = a[1];
+ var az = a[2];
+ out[0] = ax + t * (b[0] - ax);
+ out[1] = ay + t * (b[1] - ay);
+ out[2] = az + t * (b[2] - az);
+ return out;
+}
+
+/**
+ * Performs a hermite interpolation with two control points
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @param {vec3} c the third operand
+ * @param {vec3} d the fourth operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {vec3} out
+ */
+export function hermite(out, a, b, c, d, t) {
+ var factorTimes2 = t * t;
+ var factor1 = factorTimes2 * (2 * t - 3) + 1;
+ var factor2 = factorTimes2 * (t - 2) + t;
+ var factor3 = factorTimes2 * (t - 1);
+ var factor4 = factorTimes2 * (3 - 2 * t);
+
+ out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
+ out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
+ out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
+
+ return out;
+}
+
+/**
+ * Performs a bezier interpolation with two control points
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the first operand
+ * @param {vec3} b the second operand
+ * @param {vec3} c the third operand
+ * @param {vec3} d the fourth operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {vec3} out
+ */
+export function bezier(out, a, b, c, d, t) {
+ var inverseFactor = 1 - t;
+ var inverseFactorTimesTwo = inverseFactor * inverseFactor;
+ var factorTimes2 = t * t;
+ var factor1 = inverseFactorTimesTwo * inverseFactor;
+ var factor2 = 3 * t * inverseFactorTimesTwo;
+ var factor3 = 3 * factorTimes2 * inverseFactor;
+ var factor4 = factorTimes2 * t;
+
+ out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
+ out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
+ out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
+
+ return out;
+}
+
+/**
+ * Generates a random vector with the given scale
+ *
+ * @param {vec3} out the receiving vector
+ * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+ * @returns {vec3} out
+ */
+export function random(out, scale) {
+ scale = scale || 1.0;
+
+ var r = glMatrix.RANDOM() * 2.0 * Math.PI;
+ var z = glMatrix.RANDOM() * 2.0 - 1.0;
+ var zScale = Math.sqrt(1.0 - z * z) * scale;
+
+ out[0] = Math.cos(r) * zScale;
+ out[1] = Math.sin(r) * zScale;
+ out[2] = z * scale;
+ return out;
+}
+
+/**
+ * Transforms the vec3 with a mat4.
+ * 4th vector component is implicitly '1'
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the vector to transform
+ * @param {mat4} m matrix to transform with
+ * @returns {vec3} out
+ */
+export function transformMat4(out, a, m) {
+ var x = a[0],
+ y = a[1],
+ z = a[2];
+ var w = m[3] * x + m[7] * y + m[11] * z + m[15];
+ w = w || 1.0;
+ out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
+ out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
+ out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
+ return out;
+}
+
+/**
+ * Transforms the vec3 with a mat3.
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the vector to transform
+ * @param {mat3} m the 3x3 matrix to transform with
+ * @returns {vec3} out
+ */
+export function transformMat3(out, a, m) {
+ var x = a[0],
+ y = a[1],
+ z = a[2];
+ out[0] = x * m[0] + y * m[3] + z * m[6];
+ out[1] = x * m[1] + y * m[4] + z * m[7];
+ out[2] = x * m[2] + y * m[5] + z * m[8];
+ return out;
+}
+
+/**
+ * Transforms the vec3 with a quat
+ * Can also be used for dual quaternions. (Multiply it with the real part)
+ *
+ * @param {vec3} out the receiving vector
+ * @param {vec3} a the vector to transform
+ * @param {quat} q quaternion to transform with
+ * @returns {vec3} out
+ */
+export function transformQuat(out, a, q) {
+ // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
+ var qx = q[0],
+ qy = q[1],
+ qz = q[2],
+ qw = q[3];
+ var x = a[0],
+ y = a[1],
+ z = a[2];
+ // var qvec = [qx, qy, qz];
+ // var uv = vec3.cross([], qvec, a);
+ var uvx = qy * z - qz * y,
+ uvy = qz * x - qx * z,
+ uvz = qx * y - qy * x;
+ // var uuv = vec3.cross([], qvec, uv);
+ var uuvx = qy * uvz - qz * uvy,
+ uuvy = qz * uvx - qx * uvz,
+ uuvz = qx * uvy - qy * uvx;
+ // vec3.scale(uv, uv, 2 * w);
+ var w2 = qw * 2;
+ uvx *= w2;
+ uvy *= w2;
+ uvz *= w2;
+ // vec3.scale(uuv, uuv, 2);
+ uuvx *= 2;
+ uuvy *= 2;
+ uuvz *= 2;
+ // return vec3.add(out, a, vec3.add(out, uv, uuv));
+ out[0] = x + uvx + uuvx;
+ out[1] = y + uvy + uuvy;
+ out[2] = z + uvz + uuvz;
+ return out;
+}
+
+/**
+ * Rotate a 3D vector around the x-axis
+ * @param {vec3} out The receiving vec3
+ * @param {vec3} a The vec3 point to rotate
+ * @param {vec3} b The origin of the rotation
+ * @param {Number} c The angle of rotation
+ * @returns {vec3} out
+ */
+export function rotateX(out, a, b, c) {
+ var p = [],
+ r = [];
+ //Translate point to the origin
+ p[0] = a[0] - b[0];
+ p[1] = a[1] - b[1];
+ p[2] = a[2] - b[2];
+
+ //perform rotation
+ r[0] = p[0];
+ r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c);
+ r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c);
+
+ //translate to correct position
+ out[0] = r[0] + b[0];
+ out[1] = r[1] + b[1];
+ out[2] = r[2] + b[2];
+
+ return out;
+}
+
+/**
+ * Rotate a 3D vector around the y-axis
+ * @param {vec3} out The receiving vec3
+ * @param {vec3} a The vec3 point to rotate
+ * @param {vec3} b The origin of the rotation
+ * @param {Number} c The angle of rotation
+ * @returns {vec3} out
+ */
+export function rotateY(out, a, b, c) {
+ var p = [],
+ r = [];
+ //Translate point to the origin
+ p[0] = a[0] - b[0];
+ p[1] = a[1] - b[1];
+ p[2] = a[2] - b[2];
+
+ //perform rotation
+ r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c);
+ r[1] = p[1];
+ r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c);
+
+ //translate to correct position
+ out[0] = r[0] + b[0];
+ out[1] = r[1] + b[1];
+ out[2] = r[2] + b[2];
+
+ return out;
+}
+
+/**
+ * Rotate a 3D vector around the z-axis
+ * @param {vec3} out The receiving vec3
+ * @param {vec3} a The vec3 point to rotate
+ * @param {vec3} b The origin of the rotation
+ * @param {Number} c The angle of rotation
+ * @returns {vec3} out
+ */
+export function rotateZ(out, a, b, c) {
+ var p = [],
+ r = [];
+ //Translate point to the origin
+ p[0] = a[0] - b[0];
+ p[1] = a[1] - b[1];
+ p[2] = a[2] - b[2];
+
+ //perform rotation
+ r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c);
+ r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c);
+ r[2] = p[2];
+
+ //translate to correct position
+ out[0] = r[0] + b[0];
+ out[1] = r[1] + b[1];
+ out[2] = r[2] + b[2];
+
+ return out;
+}
+
+/**
+ * Get the angle between two 3D vectors
+ * @param {vec3} a The first operand
+ * @param {vec3} b The second operand
+ * @returns {Number} The angle in radians
+ */
+export function angle(a, b) {
+ var tempA = fromValues(a[0], a[1], a[2]);
+ var tempB = fromValues(b[0], b[1], b[2]);
+
+ normalize(tempA, tempA);
+ normalize(tempB, tempB);
+
+ var cosine = dot(tempA, tempB);
+
+ if (cosine > 1.0) {
+ return 0;
+ } else if (cosine < -1.0) {
+ return Math.PI;
+ } else {
+ return Math.acos(cosine);
+ }
+}
+
+/**
+ * Returns a string representation of a vector
+ *
+ * @param {vec3} a vector to represent as a string
+ * @returns {String} string representation of the vector
+ */
+export function str(a) {
+ return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
+}
+
+/**
+ * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {vec3} a The first vector.
+ * @param {vec3} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
+}
+
+/**
+ * Returns whether or not the vectors have approximately the same elements in the same position.
+ *
+ * @param {vec3} a The first vector.
+ * @param {vec3} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));
+}
+
+/**
+ * Alias for {@link vec3.subtract}
+ * @function
+ */
+export var sub = subtract;
+
+/**
+ * Alias for {@link vec3.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link vec3.divide}
+ * @function
+ */
+export var div = divide;
+
+/**
+ * Alias for {@link vec3.distance}
+ * @function
+ */
+export var dist = distance;
+
+/**
+ * Alias for {@link vec3.squaredDistance}
+ * @function
+ */
+export var sqrDist = squaredDistance;
+
+/**
+ * Alias for {@link vec3.length}
+ * @function
+ */
+export var len = length;
+
+/**
+ * Alias for {@link vec3.squaredLength}
+ * @function
+ */
+export var sqrLen = squaredLength;
+
+/**
+ * Perform some operation over an array of vec3s.
+ *
+ * @param {Array} a the array of vectors to iterate over
+ * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
+ * @param {Number} offset Number of elements to skip at the beginning of the array
+ * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
+ * @param {Function} fn Function to call for each vector in the array
+ * @param {Object} [arg] additional argument to pass to fn
+ * @returns {Array} a
+ * @function
+ */
+export var forEach = function () {
+ var vec = create();
+
+ return function (a, stride, offset, count, fn, arg) {
+ var i = void 0,
+ l = void 0;
+ if (!stride) {
+ stride = 3;
+ }
+
+ if (!offset) {
+ offset = 0;
+ }
+
+ if (count) {
+ l = Math.min(count * stride + offset, a.length);
+ } else {
+ l = a.length;
+ }
+
+ for (i = offset; i < l; i += stride) {
+ vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];
+ fn(vec, vec, arg);
+ a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];
+ }
+
+ return a;
+ };
+}();
\ No newline at end of file
diff --git a/lib/gl-matrix/vec4.js b/lib/gl-matrix/vec4.js
new file mode 100644
index 00000000..0b68ab63
--- /dev/null
+++ b/lib/gl-matrix/vec4.js
@@ -0,0 +1,614 @@
+import * as glMatrix from "./common.js";
+
+/**
+ * 4 Dimensional Vector
+ * @module vec4
+ */
+
+/**
+ * Creates a new, empty vec4
+ *
+ * @returns {vec4} a new 4D vector
+ */
+export function create() {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ if (glMatrix.ARRAY_TYPE != Float32Array) {
+ out[0] = 0;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ }
+ return out;
+}
+
+/**
+ * Creates a new vec4 initialized with values from an existing vector
+ *
+ * @param {vec4} a vector to clone
+ * @returns {vec4} a new 4D vector
+ */
+export function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Creates a new vec4 initialized with the given values
+ *
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @param {Number} w W component
+ * @returns {vec4} a new 4D vector
+ */
+export function fromValues(x, y, z, w) {
+ var out = new glMatrix.ARRAY_TYPE(4);
+ out[0] = x;
+ out[1] = y;
+ out[2] = z;
+ out[3] = w;
+ return out;
+}
+
+/**
+ * Copy the values from one vec4 to another
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the source vector
+ * @returns {vec4} out
+ */
+export function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Set the components of a vec4 to the given values
+ *
+ * @param {vec4} out the receiving vector
+ * @param {Number} x X component
+ * @param {Number} y Y component
+ * @param {Number} z Z component
+ * @param {Number} w W component
+ * @returns {vec4} out
+ */
+export function set(out, x, y, z, w) {
+ out[0] = x;
+ out[1] = y;
+ out[2] = z;
+ out[3] = w;
+ return out;
+}
+
+/**
+ * Adds two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ return out;
+}
+
+/**
+ * Subtracts vector b from vector a
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ return out;
+}
+
+/**
+ * Multiplies two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function multiply(out, a, b) {
+ out[0] = a[0] * b[0];
+ out[1] = a[1] * b[1];
+ out[2] = a[2] * b[2];
+ out[3] = a[3] * b[3];
+ return out;
+}
+
+/**
+ * Divides two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function divide(out, a, b) {
+ out[0] = a[0] / b[0];
+ out[1] = a[1] / b[1];
+ out[2] = a[2] / b[2];
+ out[3] = a[3] / b[3];
+ return out;
+}
+
+/**
+ * Math.ceil the components of a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to ceil
+ * @returns {vec4} out
+ */
+export function ceil(out, a) {
+ out[0] = Math.ceil(a[0]);
+ out[1] = Math.ceil(a[1]);
+ out[2] = Math.ceil(a[2]);
+ out[3] = Math.ceil(a[3]);
+ return out;
+}
+
+/**
+ * Math.floor the components of a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to floor
+ * @returns {vec4} out
+ */
+export function floor(out, a) {
+ out[0] = Math.floor(a[0]);
+ out[1] = Math.floor(a[1]);
+ out[2] = Math.floor(a[2]);
+ out[3] = Math.floor(a[3]);
+ return out;
+}
+
+/**
+ * Returns the minimum of two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function min(out, a, b) {
+ out[0] = Math.min(a[0], b[0]);
+ out[1] = Math.min(a[1], b[1]);
+ out[2] = Math.min(a[2], b[2]);
+ out[3] = Math.min(a[3], b[3]);
+ return out;
+}
+
+/**
+ * Returns the maximum of two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {vec4} out
+ */
+export function max(out, a, b) {
+ out[0] = Math.max(a[0], b[0]);
+ out[1] = Math.max(a[1], b[1]);
+ out[2] = Math.max(a[2], b[2]);
+ out[3] = Math.max(a[3], b[3]);
+ return out;
+}
+
+/**
+ * Math.round the components of a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to round
+ * @returns {vec4} out
+ */
+export function round(out, a) {
+ out[0] = Math.round(a[0]);
+ out[1] = Math.round(a[1]);
+ out[2] = Math.round(a[2]);
+ out[3] = Math.round(a[3]);
+ return out;
+}
+
+/**
+ * Scales a vec4 by a scalar number
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the vector to scale
+ * @param {Number} b amount to scale the vector by
+ * @returns {vec4} out
+ */
+export function scale(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ return out;
+}
+
+/**
+ * Adds two vec4's after scaling the second operand by a scalar value
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @param {Number} scale the amount to scale b by before adding
+ * @returns {vec4} out
+ */
+export function scaleAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ return out;
+}
+
+/**
+ * Calculates the euclidian distance between two vec4's
+ *
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {Number} distance between a and b
+ */
+export function distance(a, b) {
+ var x = b[0] - a[0];
+ var y = b[1] - a[1];
+ var z = b[2] - a[2];
+ var w = b[3] - a[3];
+ return Math.sqrt(x * x + y * y + z * z + w * w);
+}
+
+/**
+ * Calculates the squared euclidian distance between two vec4's
+ *
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {Number} squared distance between a and b
+ */
+export function squaredDistance(a, b) {
+ var x = b[0] - a[0];
+ var y = b[1] - a[1];
+ var z = b[2] - a[2];
+ var w = b[3] - a[3];
+ return x * x + y * y + z * z + w * w;
+}
+
+/**
+ * Calculates the length of a vec4
+ *
+ * @param {vec4} a vector to calculate length of
+ * @returns {Number} length of a
+ */
+export function length(a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ var w = a[3];
+ return Math.sqrt(x * x + y * y + z * z + w * w);
+}
+
+/**
+ * Calculates the squared length of a vec4
+ *
+ * @param {vec4} a vector to calculate squared length of
+ * @returns {Number} squared length of a
+ */
+export function squaredLength(a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ var w = a[3];
+ return x * x + y * y + z * z + w * w;
+}
+
+/**
+ * Negates the components of a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to negate
+ * @returns {vec4} out
+ */
+export function negate(out, a) {
+ out[0] = -a[0];
+ out[1] = -a[1];
+ out[2] = -a[2];
+ out[3] = -a[3];
+ return out;
+}
+
+/**
+ * Returns the inverse of the components of a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to invert
+ * @returns {vec4} out
+ */
+export function inverse(out, a) {
+ out[0] = 1.0 / a[0];
+ out[1] = 1.0 / a[1];
+ out[2] = 1.0 / a[2];
+ out[3] = 1.0 / a[3];
+ return out;
+}
+
+/**
+ * Normalize a vec4
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a vector to normalize
+ * @returns {vec4} out
+ */
+export function normalize(out, a) {
+ var x = a[0];
+ var y = a[1];
+ var z = a[2];
+ var w = a[3];
+ var len = x * x + y * y + z * z + w * w;
+ if (len > 0) {
+ len = 1 / Math.sqrt(len);
+ out[0] = x * len;
+ out[1] = y * len;
+ out[2] = z * len;
+ out[3] = w * len;
+ }
+ return out;
+}
+
+/**
+ * Calculates the dot product of two vec4's
+ *
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @returns {Number} dot product of a and b
+ */
+export function dot(a, b) {
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
+}
+
+/**
+ * Performs a linear interpolation between two vec4's
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the first operand
+ * @param {vec4} b the second operand
+ * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+ * @returns {vec4} out
+ */
+export function lerp(out, a, b, t) {
+ var ax = a[0];
+ var ay = a[1];
+ var az = a[2];
+ var aw = a[3];
+ out[0] = ax + t * (b[0] - ax);
+ out[1] = ay + t * (b[1] - ay);
+ out[2] = az + t * (b[2] - az);
+ out[3] = aw + t * (b[3] - aw);
+ return out;
+}
+
+/**
+ * Generates a random vector with the given scale
+ *
+ * @param {vec4} out the receiving vector
+ * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+ * @returns {vec4} out
+ */
+export function random(out, scale) {
+ scale = scale || 1.0;
+
+ // Marsaglia, George. Choosing a Point from the Surface of a
+ // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.
+ // http://projecteuclid.org/euclid.aoms/1177692644;
+ var v1, v2, v3, v4;
+ var s1, s2;
+ do {
+ v1 = glMatrix.RANDOM() * 2 - 1;
+ v2 = glMatrix.RANDOM() * 2 - 1;
+ s1 = v1 * v1 + v2 * v2;
+ } while (s1 >= 1);
+ do {
+ v3 = glMatrix.RANDOM() * 2 - 1;
+ v4 = glMatrix.RANDOM() * 2 - 1;
+ s2 = v3 * v3 + v4 * v4;
+ } while (s2 >= 1);
+
+ var d = Math.sqrt((1 - s1) / s2);
+ out[0] = scale * v1;
+ out[1] = scale * v2;
+ out[2] = scale * v3 * d;
+ out[3] = scale * v4 * d;
+ return out;
+}
+
+/**
+ * Transforms the vec4 with a mat4.
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the vector to transform
+ * @param {mat4} m matrix to transform with
+ * @returns {vec4} out
+ */
+export function transformMat4(out, a, m) {
+ var x = a[0],
+ y = a[1],
+ z = a[2],
+ w = a[3];
+ out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
+ out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
+ out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
+ out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
+ return out;
+}
+
+/**
+ * Transforms the vec4 with a quat
+ *
+ * @param {vec4} out the receiving vector
+ * @param {vec4} a the vector to transform
+ * @param {quat} q quaternion to transform with
+ * @returns {vec4} out
+ */
+export function transformQuat(out, a, q) {
+ var x = a[0],
+ y = a[1],
+ z = a[2];
+ var qx = q[0],
+ qy = q[1],
+ qz = q[2],
+ qw = q[3];
+
+ // calculate quat * vec
+ var ix = qw * x + qy * z - qz * y;
+ var iy = qw * y + qz * x - qx * z;
+ var iz = qw * z + qx * y - qy * x;
+ var iw = -qx * x - qy * y - qz * z;
+
+ // calculate result * inverse quat
+ out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
+ out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
+ out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
+ out[3] = a[3];
+ return out;
+}
+
+/**
+ * Returns a string representation of a vector
+ *
+ * @param {vec4} a vector to represent as a string
+ * @returns {String} string representation of the vector
+ */
+export function str(a) {
+ return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
+}
+
+/**
+ * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {vec4} a The first vector.
+ * @param {vec4} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
+}
+
+/**
+ * Returns whether or not the vectors have approximately the same elements in the same position.
+ *
+ * @param {vec4} a The first vector.
+ * @param {vec4} b The second vector.
+ * @returns {Boolean} True if the vectors are equal, false otherwise.
+ */
+export function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
+}
+
+/**
+ * Alias for {@link vec4.subtract}
+ * @function
+ */
+export var sub = subtract;
+
+/**
+ * Alias for {@link vec4.multiply}
+ * @function
+ */
+export var mul = multiply;
+
+/**
+ * Alias for {@link vec4.divide}
+ * @function
+ */
+export var div = divide;
+
+/**
+ * Alias for {@link vec4.distance}
+ * @function
+ */
+export var dist = distance;
+
+/**
+ * Alias for {@link vec4.squaredDistance}
+ * @function
+ */
+export var sqrDist = squaredDistance;
+
+/**
+ * Alias for {@link vec4.length}
+ * @function
+ */
+export var len = length;
+
+/**
+ * Alias for {@link vec4.squaredLength}
+ * @function
+ */
+export var sqrLen = squaredLength;
+
+/**
+ * Perform some operation over an array of vec4s.
+ *
+ * @param {Array} a the array of vectors to iterate over
+ * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
+ * @param {Number} offset Number of elements to skip at the beginning of the array
+ * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
+ * @param {Function} fn Function to call for each vector in the array
+ * @param {Object} [arg] additional argument to pass to fn
+ * @returns {Array} a
+ * @function
+ */
+export var forEach = function () {
+ var vec = create();
+
+ return function (a, stride, offset, count, fn, arg) {
+ var i = void 0,
+ l = void 0;
+ if (!stride) {
+ stride = 4;
+ }
+
+ if (!offset) {
+ offset = 0;
+ }
+
+ if (count) {
+ l = Math.min(count * stride + offset, a.length);
+ } else {
+ l = a.length;
+ }
+
+ for (i = offset; i < l; i += stride) {
+ vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3];
+ fn(vec, vec, arg);
+ a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3];
+ }
+
+ return a;
+ };
+}();
\ No newline at end of file
diff --git a/package.json b/package.json
index 6eae56a8..e8d7329d 100644
--- a/package.json
+++ b/package.json
@@ -3,7 +3,7 @@
"description": "Javascript Matrix and Vector library for High Performance WebGL apps",
"version": "2.7.1",
"main": "dist/gl-matrix.js",
- "module": "src/gl-matrix.js",
+ "module": "lib/gl-matrix.js",
"homepage": "http://glmatrix.net",
"license": "MIT",
"bugs": {
@@ -30,9 +30,11 @@
"update-license-version": "node utils/update-license-version.js",
"build": "webpack --config utils/webpack.config.js",
"build-min": "webpack --config utils/webpack.config.min.js",
- "build-all": "npm run update-license-version&&npm run build&&npm run build-min"
+ "build-esm": "BABEL_ENV=esm babel src -d lib",
+ "build-all": "npm run update-license-version&&npm run build&&npm run build-min&&npm run build-esm"
},
"devDependencies": {
+ "babel-cli": "^6.26.0",
"babel-core": "^6.26.3",
"babel-loader": "^7.1.4",
"babel-preset-env": "^1.7.0",
@@ -41,8 +43,8 @@
"mocha": "^5.1.1",
"node-libs-browser": "^2.1.0",
"uglifyjs-webpack-plugin": "^1.2.5",
- "webpack-cli": "^2.1.3",
- "webpack": "^4.8.3"
+ "webpack": "^4.8.3",
+ "webpack-cli": "^2.1.3"
},
"dependencies": {},
"sideEffects": false