-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhexcells.py
768 lines (648 loc) · 22.8 KB
/
hexcells.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
"""
Hexcells Solver
Usage:
hexcells.py [--debug=LEVEL] [--show-moves] HEXCELLS_FILES...
Options:
-h --help Show this screen.
--debug=LEVEL Debug print level [default: 10]
--show-moves Show moves made during solving (synonym for --debug=15)
"""
from __future__ import unicode_literals
from __future__ import division
"""
Level credits
alpha-first_hexcells_test - Invaluable for basic debug and testing
cookie-teamwork - All the early development was against this level
cookie-the_star - This one necessitated advanced_arithmetic
darman-tutorial_12 - Took a lot of rewriting and all the pattern stuff to get this going
"""
from collections import defaultdict
import random
import time
import itertools
import sys
import docopt
from cached_property import cached_property
from colorama import init, Back
init()
DEBUG = 0
# colors
EMPTY, BLACK, BLUE, UNKNOWN = range(1, 5)
# constraint types
BASIC, AREA, VERTICAL, LEFT_DIAG, RIGHT_DIAG = range(1, 6)
# modifiers
TOGETHER, APART = range(1, 3)
def colored(text, color):
if color:
return color + text + Back.RESET
else:
return text
def add(a, b):
return a[0] + b[0], a[1] + b[1]
class Cell(object):
def __init__(self, parts):
self._parts = parts
def __str__(self):
if self._parts[0] == ".":
return " "
elif self._parts[0] in 'ox':
return ".."
else:
return "".join(self._parts)
@cached_property
def color(self):
if self._parts[0] == 'O':
return BLACK
elif self._parts[0] == 'X':
return BLUE
elif self._parts[0] in 'ox':
return UNKNOWN
elif self._parts[0] in '\\|/.':
return EMPTY
else:
assert False
@property
def constraint_type(self):
if self._parts[1] == '.':
return None
if self._parts[0] in 'ox.':
return None
elif self._parts[0] == 'O':
return BASIC
elif self._parts[0] == 'X':
return AREA
elif self._parts[0] == '\\':
return RIGHT_DIAG
elif self._parts[0] == '|':
return VERTICAL
elif self._parts[0] == '/':
return LEFT_DIAG
else:
assert False
@cached_property
def true_value(self):
if self._parts[0] in 'xX':
return 1
return 0
@cached_property
def modifier(self):
if self._parts[1] == 'c':
return TOGETHER
elif self._parts[1] == 'n':
return APART
else:
return None
def play(self):
assert self._parts[0] in 'ox'
self._parts = self._parts[0].upper() + self._parts[1]
del self.color
@property
def done(self):
return self._parts[0] not in 'ox'
class Level(object):
def __init__(self, data):
"""
*.hexcells format
Encoding: UTF-8
A level is a sequence of 38 lines, separated with '\n' character:
"Hexcells level v1"
Level title
Author
Level custom text, part 1
Level custom text, part 2
33 level lines follow:
A line is a sequence of 33 2-character groups.
'.' = nothing, 'o' = black, 'O' = black revealed, 'x' = blue, 'X' = blue revealed, '\','|','/' = column number at 3 different angles (-60, 0, 60)
'.' = blank, '+' = has number, 'c' = consecutive, 'n' = not consecutive
"""
lines = data.splitlines()
assert lines[0] == "Hexcells level v1"
self.title = lines[1]
self.author = lines[2]
self.custom_text_1 = lines[3]
self.custom_text_2 = lines[4]
self._cells = self._parse_body(lines[5:])
self._colors = dict()
def _parse_body(self, lines):
cells = {}
for y, row in enumerate(lines):
for x, cell in enumerate(zip(row[::2], row[1::2])):
cells[x, y] = Cell(cell)
return cells
def neighbours(self, cell):
for c in [
(1, -1),
(0, -2),
(-1, -1),
(-1, 1),
(0, 2),
(1, 1),
]:
yield add(cell, c)
def community(self, cell):
for c in self.neighbours(cell):
yield c
for c in [
(2, -2),
(1, -3),
(0, -4),
(-1, -3),
(-2, -2),
(-2, 0),
(-2, 2),
(-1, 3),
(0, 4),
(1, 3),
(2, 2),
(2, 0),
]:
yield add(cell, c)
def _line(self, cell, step):
while True:
cell = add(cell, step)
if cell not in self._cells:
return
yield cell
def vertical(self, cell):
return self._line(cell, (0, 2))
def left_diag(self, cell):
return self._line(cell, (-1, 1))
def right_diag(self, cell):
return self._line(cell, (1, 1))
def get_cells(self, cell, constraint_type):
return list({
BASIC: self.neighbours,
AREA: self.community,
VERTICAL: self.vertical,
LEFT_DIAG: self.left_diag,
RIGHT_DIAG: self.right_diag,
}[constraint_type](cell))
def all_cells(self):
return self._cells.keys()
def total_count(self):
return self._true_count(self.all_cells())
def dump(self, reds=None, blues=None):
colors = defaultdict(lambda: None)
if blues:
for c in blues:
colors[c] = Back.CYAN
if reds:
for c in reds:
colors[c] = Back.MAGENTA
s = ""
for y in range(33):
for x in range(33):
s += colored(str(self._cells[(x, y)]), colors[x, y])
del colors[x, y]
s += "\n"
for key, color in colors.iteritems():
s += colored(key, color) + "\n"
print s
def get_color(self, c):
try:
return self._colors[c]
except:
res = self._cells.get(c, Cell("..")).color
self._colors[c] = res
return res
def get_constrant(self, c):
t = self._cells.get(c, Cell("..")).constraint_type
if t is None:
return None
cells = self.get_cells(c, t)
count = self._true_count(cells)
modifier = self._cells[c].modifier
return t, cells, count, modifier
def _true_count(self, cells):
return sum(self._cells.get(c, Cell("..")).true_value for c in cells)
def play(self, c, value):
self._cells[c].play()
assert self._cells[c].color == value
self._colors[c] = value
def done(self):
return all(self._cells[c].done for c in self.all_cells())
def transpose(matrix):
return zip(*matrix)
def cut_patterns(indicies, patterns, new_cells):
res_i = []
res_v = []
for i, v in zip(indicies, transpose(patterns)):
if i in new_cells:
res_i.append(i)
res_v.append(v)
return res_i, transpose(res_v)
def intersect_patterns(p1, p2):
p1 = set(p1)
p2 = set(p2)
return p1 & p2
def limit_patterns(patterns, min_count, max_count):
new_min = 1000
new_max = 0
res = []
for v in patterns:
c = sum(x==BLUE for x in v)
if min_count <= c <= max_count:
res.append(v)
new_min = min(c, new_min)
new_max = max(c, new_max)
return res, new_min, new_max
class Constraint(object):
def __init__(self, bases, cells, min_count, max_count, debug, indicies=None, patterns=None):
self.bases = frozenset(bases)
self.cells = frozenset(cells)
self.min_count = min_count
self.max_count = max_count
self._key = self.cells, self.min_count, self.max_count
self.interesting = min_count != 0 or max_count != len(cells)
self.indicies = indicies
self.patterns = patterns
self.debug = debug
@classmethod
def make(cls, base, cells, min_count, max_count, level, indicies=None, patterns=None):
cells, min_count, max_count = cls._normalize(cells, min_count, max_count, level)
debug = str(base)
return Constraint({base}, cells, min_count, max_count, debug, indicies, patterns)
@staticmethod
def _normalize(cells, min_count, max_count, level):
assert 0 <= min_count <= max_count
blue_count = sum(1 for c in cells if level.get_color(c) == BLUE)
cells = {c for c in cells if level.get_color(c) == UNKNOWN}
min_count = max(0, min_count - blue_count)
max_count -= blue_count
assert 0 <= min_count <= max_count <= len(cells)
return cells, min_count, max_count
def get_moves(self, level):
if len(self.cells) == 0:
return set()
if self.min_count == len(self.cells):
return {(c, BLUE) for c in self.cells}
if self.max_count == 0:
return {(c, BLACK) for c in self.cells}
if self.patterns:
moves = set()
for c, values in zip(self.indicies, transpose(self.patterns)):
if len(set(values)) == 1:
moves.add((c, values[0]))
return moves
return set()
def __hash__(self):
return hash(self._key)
def __eq__(self, other):
return self.__class__ == other.__class__ and self._key == other._key
def __ne__(self, other):
return not(self == other)
def get_inverse_subset_constraint(self, other):
""" if other is a subset of us, return the complement of that subset """
if other.cells < self.cells:
bases = self.bases | other.bases
cells = self.cells - other.cells
min_count = max(self.min_count - other.max_count, 0)
max_count = min(self.max_count - other.min_count, len(cells))
assert max_count >= min_count
debug = "({0}-{1})".format(self.debug, other.debug)
if self.patterns:
indicies, patterns = cut_patterns(self.indicies, self.patterns, cells)
patterns, min_count, max_count = limit_patterns(patterns, min_count, max_count)
else:
indicies = None
patterns = None
return Constraint(bases, cells, min_count, max_count, debug, indicies=indicies, patterns=patterns)
else:
return None
def get_intersection(self, other):
cells = self.cells & other.cells
if not cells:
return None
len_cells = len(cells)
self_rem = len(self.cells) - len_cells
other_rem = len(other.cells) - len_cells
min_count = max(self.min_count - self_rem, other.min_count - other_rem, 0)
max_count = min(self.max_count, other.max_count, len_cells)
bases = self.bases | other.bases
assert max_count >= min_count
debug = "({0}&{1})".format(self.debug, other.debug)
if self.patterns:
indicies, patterns = cut_patterns(self.indicies, self.patterns, cells)
if other.patterns:
indicies2, patterns2 = cut_patterns(other.indicies, other.patterns, cells)
assert indicies == indicies2
patterns = intersect_patterns(patterns, patterns2)
patterns, min_count, max_count = limit_patterns(patterns, min_count, max_count)
else:
if other.patterns:
indicies, patterns = cut_patterns(other.indicies, other.patterns, cells)
patterns, min_count, max_count = limit_patterns(patterns, min_count, max_count)
else:
indicies = None
patterns = None
return Constraint(bases, cells, min_count, max_count, debug, indicies=indicies, patterns=patterns)
def __str__(self):
return "{s.__class__.__name__}({s.debug})".format(s=self)
def merge(self, other):
assert self.cells == other.cells
min_count = max(self.min_count, other.min_count)
max_count = min(self.max_count, other.max_count)
if self.min_count == min_count and self.max_count == max_count:
return None
if other.min_count == min_count and other.max_count == max_count:
return other
debug = "{0}%{1}".format(self.debug, other.debug)
if self.patterns:
indicies, patterns = self.indicies, self.patterns
if other.patterns:
indicies2, patterns2 = other.indicies, other.patterns
assert indicies == indicies2
patterns = intersect_patterns(patterns, patterns2)
patterns, min_count, max_count = limit_patterns(patterns, min_count, max_count)
else:
if other.patterns:
indicies, patterns = other.indicies, other.patterns
patterns, min_count, max_count = limit_patterns(patterns, min_count, max_count)
else:
indicies = None
patterns = None
return Constraint(self.bases | other.bases, self.cells, min_count, max_count, debug, indicies=indicies, patterns=patterns)
def basic(base, cells, count, level):
cs = Constraint.make(base, cells, count, count, level)
moves = cs.get_moves(level)
if moves:
return moves, cs
if cs.interesting:
return None, cs
return None, None
def eval_modifier(cells, count, is_valid, wrap, level):
if not wrap:
cells = [c for c in cells if level.get_color(c) != EMPTY]
current_colors = [level.get_color(c) for c in cells]
blue_count = sum(1 for x in current_colors if x == BLUE)
unknown_indicies = [i for i, x in enumerate(current_colors) if x == UNKNOWN]
needed = count - blue_count
# try out every blue placement and collect the valid ones
valid = set()
for indicies in itertools.combinations(unknown_indicies, needed):
indicies = set(indicies)
new_colors = []
for i, c in enumerate(current_colors):
if c == UNKNOWN:
if i in indicies:
new_colors.append(BLUE)
else:
new_colors.append(BLACK)
else:
new_colors.append(c)
# handle wrapping by moving blues from the start to the end
if wrap:
cnt = 0
for c in new_colors:
if c == BLUE:
cnt += 1
else:
break
wrapped = new_colors[cnt:] + new_colors[:cnt]
else:
wrapped = new_colors
# check that this is a valid sequence
if is_valid(wrapped):
valid.add(tuple(new_colors))
# sort them, filter the known ones and collect up the indicies
indicies = []
values = []
for cell, orig_color, new_colors in sorted(zip(cells, current_colors, transpose(valid))):
if orig_color == UNKNOWN:
indicies.append(cell)
values.append(new_colors)
return indicies, transpose(values)
def disjoint(base, cells, count, loop, level):
def is_valid(new_colors):
state = 0
for c in new_colors:
if state == 0: # looking for blues
if c == BLUE:
state = 1
if state == 1: # looking for a gap
if c != BLUE:
state = 2
if state == 2: # looking for more blues
if c == BLUE:
return True
return False
indicies, valid = eval_modifier(cells, count, is_valid, loop, level)
cs = Constraint.make(base, cells, count, count, level, indicies, valid)
moves = cs.get_moves(level)
if moves:
return moves, cs
if cs.interesting:
return None, cs
return None, None
def joint(base, cells, count, loop, level):
def is_valid(new_colors):
state = 0
for c in new_colors:
if state == 0: # looking for blues
if c == BLUE:
state = 1
if state == 1: # looking for a gap
if c != BLUE:
state = 2
if state == 2: # check no more blues
if c == BLUE:
return False
return True
indicies, valid = eval_modifier(cells, count, is_valid, loop, level)
cs = Constraint.make(base, cells, count, count, level, indicies, valid)
moves = cs.get_moves(level)
if moves:
return moves, cs
if cs.interesting:
return None, cs
return None, None
def subset(cs1, cs2, level):
cs = cs1.get_inverse_subset_constraint(cs2)
if cs:
moves = cs.get_moves(level)
if moves:
return moves, cs
if cs.interesting:
return None, cs
return None, None
def intersection(cs1, cs2, level):
cs = cs1.get_intersection(cs2)
if cs:
moves = cs.get_moves(level)
if moves:
return moves, cs
if cs.interesting:
return None, cs
return None, None
class Solver(object):
def __init__(self, level):
self.level = level
def evaluate(self):
if DEBUG > 20: print "evaluate"
self.all_constraints = dict()
self.arith_new = set()
self.arith_old = set()
self.adv_new = set()
self.adv_old = set()
self.super_new = set()
self.super_old = set()
self.new_stuff = True
for c in self.level.all_cells():
res = self.level.get_constrant(c)
if res:
cs_type, cells, count, modifier = res
if modifier == APART:
moves, cs = disjoint(c, cells, count, cs_type==BASIC, self.level)
elif modifier == TOGETHER:
moves, cs = joint(c, cells, count, cs_type==BASIC, self.level)
else:
moves, cs = basic(c, cells, count, self.level)
if moves:
return moves, cs
if cs:
self.add_constraint(cs)
return None, None
def add_constraint(self, cs):
old = self.all_constraints.get(cs.cells)
if old is not None:
old = self.all_constraints[cs.cells]
cs = old.merge(cs)
if cs is None:
return
self.arith_new.discard(old)
self.arith_old.discard(old)
self.adv_new.discard(old)
self.adv_old.discard(old)
self.super_new.discard(old)
self.super_old.discard(old)
if DEBUG > 30: print "new", cs
self.all_constraints[cs.cells] = cs
self.arith_new.add(cs)
self.adv_new.add(cs)
self.super_new.add(cs)
self.new_stuff = True
def play(self, cell, color):
if DEBUG > 20: print "playing", cell, color
self.level.play(cell, color)
def arithmetic(self):
if DEBUG > 20: print "constraint arithmetic", len(self.all_constraints), len(self.arith_new)
new_constraints = set()
def inner(a, b):
for cs1 in a:
for cs2 in b:
if cs2.cells < cs1.cells:
moves, cs = subset(cs1, cs2, self.level)
if moves:
return moves, cs
if cs:
new_constraints.add(cs)
return None, None
moves, cs = inner(self.arith_new, self.arith_new)
if moves:
return moves, cs
moves, cs = inner(self.arith_old, self.arith_new)
if moves:
return moves, cs
moves, cs = inner(self.arith_new, self.arith_old)
if moves:
return moves, cs
self.arith_old.update(self.arith_new)
self.arith_new = set()
for cs in new_constraints:
self.add_constraint(cs)
return None, None
def advanced_arithmetic(self):
if DEBUG > 20: print "advanced arithmetic", len(self.all_constraints), len(self.adv_new)
new_constraints = set()
def inner2(a):
a = list(a)
for i, cs1 in enumerate(a):
for cs2 in a[i:]:
moves, cs = intersection(cs1, cs2, self.level)
if moves:
return moves, cs
if cs:
new_constraints.add(cs)
return None, None
def inner(a, b):
for cs1 in a:
for cs2 in b:
moves, cs = intersection(cs1, cs2, self.level)
if moves:
return moves, cs
if cs:
new_constraints.add(cs)
return None, None
moves, cs = inner2(self.adv_new)
if moves:
return moves, cs
moves, cs = inner(self.adv_new, self.adv_old)
if moves:
return moves, cs
self.adv_old.update(self.adv_new)
self.adv_new = set()
for cs in new_constraints:
self.add_constraint(cs)
return None, None
def global_constraint(self):
if DEBUG > 20: print "global constraint"
count = self.level.total_count()
cells = self.level.all_cells()
moves, cs = basic("global", cells, count, self.level)
if moves:
return moves, cs
if cs:
self.add_constraint(cs)
return None, None
def _solve(self):
moves, cs = self.evaluate()
if moves:
return moves, cs
while self.new_stuff:
self.new_stuff = False
moves, cs = self.arithmetic()
if moves:
return moves, cs
if not self.new_stuff:
moves, cs = self.advanced_arithmetic()
if moves:
return moves, cs
if not self.new_stuff:
# add in the global constraint
moves, cs = self.global_constraint()
if moves:
return moves, cs
return None, None
def solve(self):
if DEBUG > 10: self.level.dump()
while True:
moves, cs = self._solve()
if not moves:
break
if DEBUG > 25: print "play", cs
for cell, color in moves:
self.play(cell, color)
if DEBUG > 10: self.level.dump(cs.bases, [c for c,_ in moves])
return self.level.done
def main():
global DEBUG
try:
arguments = docopt.docopt(__doc__)
except docopt.DocoptExit:
print __doc__
sys.exit(1)
DEBUG = int(arguments["--debug"])
if arguments.get("--show-moves"):
DEBUG = 15
for fname in arguments["HEXCELLS_FILES"]:
level = Level(open(fname).read())
start = time.time()
Solver(level).solve()
level.dump()
print "File:", fname
print "Done:", level.done()
print "Time:", time.time() - start
if not level.done():
sys.exit(1)
if __name__ == "__main__":
main()