-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcli.py
139 lines (122 loc) · 4.11 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
from src.utils.task import transcribe
from pathlib import Path
import mimetypes
def cli():
parser = argparse.ArgumentParser(description="Whisper Auto Transcribe")
parser.add_argument(
"input",
metavar="input",
type=str,
help="Input video file(s) or directory containing video files. If a directory is specified, batch work will be performed on all files in the directory.",
)
parser.add_argument(
"--output",
metavar="output",
type=str,
help="Output file name or directory. ",
required=True,
)
parser.add_argument(
"-lang",
"--language",
metavar="language",
type=str,
help="Input lanuage code [ISO 639-1]. Default [auto].",
required=False,
default="auto",
)
parser.add_argument(
"--task",
metavar="task",
type=str,
help="Task mode [translate, transcribe] Default [transcribe].",
required=False,
default="transcribe",
)
parser.add_argument(
"--device",
metavar="device",
type=str,
help="Use device. [cpu, cuda] Default [cuda].",
required=False,
default="cuda",
)
parser.add_argument(
"--transcribe-model",
metavar="transcribe_model",
type=str,
help="Use model. [whisper, whisper_timestamps, stable_whisper] Default [stable_whisper].",
required=False,
default="stable_whisper",
)
parser.add_argument(
"--remain-tempfile",
action="store_true",
help="Keep temporary file after processing. Default is False.",
required=False,
default=False,
)
model_size_group = parser.add_mutually_exclusive_group()
model_size_group.add_argument(
"--model-size",
metavar="model_size",
type=str,
help="Use model size. [tiny, base, small, medium, large] Default [medium].",
required=False,
default="medium",
)
model_size_group.add_argument(
"--model",
metavar="model",
type=str,
help="Use model size. [tiny, base, small, medium, large] Default [medium].",
required=False,
default="medium",
)
args = parser.parse_args()
input_path = Path(args.input)
delete_tempfile = not args.remain_tempfile
if input_path.is_dir():
# Batch mode - process all videos in the input directory
output_dir = Path(args.output)
for media_file in input_path.glob("*"):
media_file_type = mimetypes.guess_type(media_file)[0]
if (
media_file_type
and "audio" in media_file_type
or "video" in media_file_type
):
subtitle_path = output_dir / (media_file.stem + ".srt")
transcribe(
str(media_file),
subtitle=str(subtitle_path),
language=args.language,
model_type=args.model_size,
transcribe_model=args.transcribe_model,
device=args.device,
task=args.task,
delete_tempfile=delete_tempfile,
)
else:
print(f"Skip. Can't transcribe file: {media_file}")
else:
media_file = args.input
media_file_type = mimetypes.guess_type(media_file)[0]
if media_file_type and "audio" in media_file_type or "video" in media_file_type:
subtitle_path = transcribe(
args.input,
subtitle=args.output,
language=args.language,
model_type=args.model_size,
transcribe_model=args.transcribe_model,
device=args.device,
task=args.task,
delete_tempfile=delete_tempfile,
)
else:
print(f"Skip. Can't transcribe file: {media_file}")
# python cli.py mp4/1min.mp4 --output out/final.srt --model-size large --remain-tempfile
# python cli.py test_mp4 --output out/batch --model-size large
if __name__ == "__main__":
cli()