-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
164 lines (138 loc) · 5.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# TODO: img_size parameter that is also used in cotta transform code
# TODO: add run/sh scripts to repo
# %%
from argparse import ArgumentParser
import random
import os
import numpy as np
import torch
from torch.utils.data import RandomSampler, DataLoader, Subset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.modules import SyncBatchNorm
import torch.distributed as dist
import core50
import domainnet
from torch.utils.data.distributed import DistributedSampler
import wandb
from IPython import get_ipython
def is_notebook() -> bool:
try:
shell = get_ipython().__class__.__name__
if shell == 'ZMQInteractiveShell':
return True # Jupyter notebook or qtconsole
elif shell == 'TerminalInteractiveShell':
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
def get_model(load_saved_model, find_unused_parameters=False):
model = dataset_.Model(device)
if load_saved_model and args.model is not None:
state_dict = torch.load(os.path.join(args.path, args.model), map_location=device)
model.load_state_dict(state_dict)
model = model.to(device)
if distributed:
model = SyncBatchNorm.convert_sync_batchnorm(model)
model = DDP(model, [dist.get_rank()], dist.get_rank(), find_unused_parameters=find_unused_parameters)
return model
def get_loader(domains, include_train_data, include_val_data):
dataset = dataset_.Dataset(root=args.path, transform=dataset_.val_transform, domains=domains)
num_train = int(len(dataset) * dataset_.train_ratio)
indices = np.random.RandomState(seed=args.seed).permutation(len(dataset))
if not include_train_data:
dataset = Subset(dataset, indices[num_train:])
elif not include_val_data:
dataset = Subset(dataset, indices[:num_train])
if distributed:
sampler = DistributedSampler(dataset, seed=args.seed, shuffle=True)
else:
sampler = RandomSampler(dataset, generator=torch.Generator().manual_seed(args.seed))
return DataLoader(dataset=dataset,
batch_size=args.batch_size,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True)
def eval(model, loader, log_as=None):
correct = torch.tensor(0, device=device)
total = torch.tensor(0, device=device)
acc = None
for image, label in loader:
image, label = image.to(device).float(), label.to(device)
output = model(image)
pred = torch.max(output, dim=1).indices
correct += torch.sum(pred == label)
total += label.size(0)
if log_as:
intermediate_correct = correct.detach().clone()
intermediate_total = total.detach().clone()
if distributed:
dist.all_reduce(intermediate_correct)
dist.all_reduce(intermediate_total)
if is_master:
acc = float(intermediate_correct / intermediate_total)
wandb.log({log_as: acc})
return acc if acc else float(correct / total)
parser = ArgumentParser()
parser.add_argument("--method", type=str)
parser.add_argument("--path", type=str, help="Path where data and models should be stored")
parser.add_argument("--epochs", type=int)
parser.add_argument("--batch_size", type=int, help="Batch size")
parser.add_argument("--lr", type=float, help="Main learning rate")
parser.add_argument("--seed", type=int, default=0)
# TODO: try different number of workers
parser.add_argument("--num_workers", default=15, type=int, help="Workers number for torch Dataloader")
parser.add_argument("--model", type=str, help="Load this model")
parser.add_argument("--dataset", type=str)
parser.add_argument("--sources", type=str, nargs='+')
parser.add_argument("--targets", type=str, nargs='+')
parser.add_argument("--mt_alpha", type=float)
parser.add_argument("--rst_m", type=float)
parser.add_argument("--resume_run", type=str)
if is_notebook():
# Add these dummy arguments so code can be run as notebook
parser.add_argument("--ip")
parser.add_argument("--stdin")
parser.add_argument("--control")
parser.add_argument("--hb")
parser.add_argument("--domain.signature_scheme")
parser.add_argument("--Session.signature_scheme")
parser.add_argument("--domain.key")
parser.add_argument("--Session.key")
parser.add_argument("--shell")
parser.add_argument("--transport")
parser.add_argument("--iopub")
parser.add_argument("--f")
args = parser.parse_args()
os.environ['PYTHONHASHSEED'] = str(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
distributed = False
if torch.cuda.is_available():
if "LOCAL_RANK" in os.environ:
distributed = True
dist.init_process_group(backend="nccl")
device = torch.device(f"cuda:{dist.get_rank()}")
torch.cuda.set_device(device) # without this, somehow pytorch will start multiple processes on GPU 0
else:
device = torch.device("cuda")
else:
if "LOCAL_RANK" in os.environ:
raise Exception("distributed but no cuda available")
device = torch.device("cpu")
is_master = not is_notebook() and (not distributed or dist.get_rank() == 0)
if is_master:
wandb.init(id=args.resume_run, project="CTTAVR", dir=args.path, resume="must" if args.resume_run else "never")
wandb.config.update({"resume_run": args.resume_run}, allow_val_change=True)
wandb.config.update(args, allow_val_change=False)
wandb.config.world_size = dist.get_world_size() if distributed else 1
dataset_ = None
if args.dataset == "CORe50":
dataset_ = core50
elif args.dataset == "DomainNet-126":
dataset_ = domainnet