|
| 1 | +// Authored by: beberiche |
| 2 | +// Co-authored by: - |
| 3 | +// Link: http://boj.kr/a194b1386c8a4767aac779c171d0d2f1 |
| 4 | + |
| 5 | +import java.util.*; |
| 6 | +import java.io.*; |
| 7 | + |
| 8 | +public class Main { |
| 9 | + public static void main(String[] args) { |
| 10 | + FastReader rd = new FastReader(); |
| 11 | + int N = rd.nextInt(); |
| 12 | + int[] a = new int[N + 1]; |
| 13 | + for (int i = 1; i <= N; i++) { |
| 14 | + a[i] = rd.nextInt(); |
| 15 | + } |
| 16 | + int h = (int) Math.ceil(Math.log(N) / Math.log(2)); |
| 17 | + int size = 1 << (h + 1); |
| 18 | + int[] tree_odd = new int[size]; |
| 19 | + int[] tree_even = new int[size]; |
| 20 | + |
| 21 | + init(1, 1, N, a, tree_odd, tree_even); |
| 22 | + |
| 23 | + int M = rd.nextInt(); |
| 24 | + |
| 25 | + StringBuffer sb = new StringBuffer(); |
| 26 | + for (int i = 0; i < M; i++) { |
| 27 | + int cmd = rd.nextInt(); |
| 28 | + int n1 = rd.nextInt(); |
| 29 | + int n2 = rd.nextInt(); |
| 30 | + |
| 31 | + if (cmd == 1) { |
| 32 | + update(1, 1, N, n1, n2, tree_odd, tree_even); |
| 33 | + } else if (cmd == 2) { |
| 34 | + sb.append(query(1, 1, N, n1, n2, tree_odd, tree_even, true)).append("\n"); |
| 35 | + } else { |
| 36 | + sb.append(query(1, 1, N, n1, n2, tree_odd, tree_even, false)).append("\n"); |
| 37 | + } |
| 38 | + } |
| 39 | + System.out.print(sb.toString()); |
| 40 | + } |
| 41 | + |
| 42 | + |
| 43 | + private static void init(int curr, int st, int ed, int[] a, int[] tree_odd, int[] tree_even) { |
| 44 | + if (st == ed) { |
| 45 | + if (a[st] % 2 == 1) { |
| 46 | + tree_odd[curr] = 1; |
| 47 | + } else { |
| 48 | + tree_even[curr] = 1; |
| 49 | + } |
| 50 | + return; |
| 51 | + } |
| 52 | + |
| 53 | + int mid = (st + ed) / 2; |
| 54 | + init(curr * 2, st, mid, a, tree_odd, tree_even); |
| 55 | + init(curr * 2 + 1, mid + 1, ed, a, tree_odd, tree_even); |
| 56 | + tree_odd[curr] = tree_odd[curr * 2] + tree_odd[curr * 2 + 1]; |
| 57 | + tree_even[curr] = tree_even[curr * 2] + tree_even[curr * 2 + 1]; |
| 58 | + } |
| 59 | + |
| 60 | + private static void update(int curr, int st, int ed, int idx, int newVal, int[] tree_odd, int[] tree_even) { |
| 61 | + if (idx < st || ed < idx) { |
| 62 | + return; |
| 63 | + } |
| 64 | + |
| 65 | + if (st == ed) { |
| 66 | + tree_even[curr] = newVal % 2 == 0 ? 1 : 0; |
| 67 | + tree_odd[curr] = newVal % 2 == 1 ? 1 : 0; |
| 68 | + return; |
| 69 | + } |
| 70 | + |
| 71 | + int mid = (st + ed) / 2; |
| 72 | + update(curr * 2, st, mid, idx, newVal, tree_odd, tree_even); |
| 73 | + update(curr * 2 + 1, mid + 1, ed, idx, newVal, tree_odd, tree_even); |
| 74 | + tree_odd[curr] = tree_odd[curr * 2] + tree_odd[curr * 2 + 1]; |
| 75 | + tree_even[curr] = tree_even[curr * 2] + tree_even[curr * 2 + 1]; |
| 76 | + } |
| 77 | + |
| 78 | + private static int query(int curr, int st, int ed, int l, int r, int[] tree_odd, int[] tree_even, boolean check) { |
| 79 | + if (r < st || ed < l) { |
| 80 | + return 0; |
| 81 | + } |
| 82 | + |
| 83 | + |
| 84 | + if (l <= st && ed <= r) { |
| 85 | + if (check) return tree_even[curr]; |
| 86 | + else return tree_odd[curr]; |
| 87 | + } |
| 88 | + |
| 89 | + |
| 90 | + int mid = (st + ed) / 2; |
| 91 | + int ret1 = query(curr * 2, st, mid, l, r, tree_odd, tree_even, check); |
| 92 | + int ret2 = query(curr * 2 + 1, mid + 1, ed, l, r, tree_odd, tree_even, check); |
| 93 | + return ret1 + ret2; |
| 94 | + } |
| 95 | + |
| 96 | + static class FastReader { |
| 97 | + BufferedReader br; |
| 98 | + StringTokenizer st; |
| 99 | + |
| 100 | + public FastReader() { |
| 101 | + br = new BufferedReader(new InputStreamReader(System.in)); |
| 102 | + } |
| 103 | + |
| 104 | + String next() { |
| 105 | + while (st == null || !st.hasMoreElements()) { |
| 106 | + try { |
| 107 | + st = new StringTokenizer(br.readLine()); |
| 108 | + } catch (IOException e) { |
| 109 | + e.printStackTrace(); |
| 110 | + } |
| 111 | + } |
| 112 | + return st.nextToken(); |
| 113 | + } |
| 114 | + |
| 115 | + int nextInt() { |
| 116 | + return Integer.parseInt(next()); |
| 117 | + } |
| 118 | + |
| 119 | + long nextLong() { |
| 120 | + return Long.parseLong(next()); |
| 121 | + } |
| 122 | + |
| 123 | + double nextDouble() { |
| 124 | + return Double.parseDouble(next()); |
| 125 | + } |
| 126 | + |
| 127 | + String nextLine() { |
| 128 | + String str = ""; |
| 129 | + try { |
| 130 | + str = br.readLine(); |
| 131 | + } catch (IOException e) { |
| 132 | + e.printStackTrace(); |
| 133 | + } |
| 134 | + return str; |
| 135 | + } |
| 136 | + } |
| 137 | +} |
| 138 | + |
| 139 | +/* Solution Description |
| 140 | +
|
| 141 | + 1. 세그먼트 트리 기본 문제. `tree[]` 를 2개 만들어, |
| 142 | + 임의의 범위에 대한 짝수, 홀수인 경우의 갯수를 따로 구한다. |
| 143 | +
|
| 144 | + */ |
0 commit comments