-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathBiSequencer.lua
85 lines (71 loc) · 2.96 KB
/
BiSequencer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
------------------------------------------------------------------------
--[[ BiSequencer ]]--
-- Encapsulates forward, backward and merge modules.
-- Input is a seqlen x inputsize [x ...] sequence tensor
-- Output is a seqlen x outputsize [x ...] sequence tensor
-- Applies a forward RNN to each element in the sequence in
-- forward order and applies a backward RNN in reverse order.
-- For each step, the outputs of both RNNs are merged together using
-- the merge module (defaults to nn.CAddTable()).
------------------------------------------------------------------------
local BiSequencer, parent = torch.class('nn.BiSequencer', 'nn.AbstractSequencer')
function BiSequencer:__init(forward, backward, merge)
parent.__init(self)
if not torch.isTypeOf(forward, 'nn.Module') then
error"BiSequencer: expecting nn.Module instance at arg 1"
end
if not backward then
backward = forward:clone()
backward:reset()
end
if not torch.isTypeOf(backward, 'nn.Module') then
error"BiSequencer: expecting nn.Module instance or nil at arg 2"
end
-- for table sequences use nn.Sequential():add(nn.ZipTable()):add(nn.Sequencer(nn.JoinTable(1,1)))
merge = merge or nn.CAddTable()
if not torch.isTypeOf(merge, 'nn.Module') then
error"BiSequencer: expecting nn.Module instance or nil at arg 3"
end
-- make into sequencer (if not already the case)
forward = self.isSeq(forward) and forward or nn.Sequencer(forward)
backward = self.isSeq(backward) and backward or nn.Sequencer(backward)
-- the backward sequence reads the input in reverse and outputs the output in correct order
backward = nn.ReverseUnreverse(backward)
local brnn = nn.Sequential()
:add(nn.ConcatTable():add(forward):add(backward))
:add(merge)
-- so that it can be handled like a Container
self.modules[1] = brnn
end
-- forward RNN can remember. backward RNN can't.
function BiSequencer:remember(remember)
local fwd, bwd = self:getForward(), self:getBackward()
fwd:remember(remember)
bwd:remember('neither')
return self
end
function BiSequencer.isSeq(module)
return torch.isTypeOf(module, 'nn.AbstractSequencer') or torch.typename(module):find('nn.Seq.+')
end
-- multiple-inheritance
nn.Decorator.decorate(BiSequencer)
function BiSequencer:getForward()
return self:get(1):get(1):get(1)
end
function BiSequencer:getBackward()
return self:get(1):get(1):get(2):getModule()
end
function BiSequencer:__tostring__()
local tab = ' '
local line = '\n'
local ext = ' | '
local extlast = ' '
local last = ' ... -> '
local str = torch.type(self)
str = str .. ' {'
str = str .. line .. tab .. 'forward: ' .. tostring(self:getForward()):gsub(line, line .. tab .. ext)
str = str .. line .. tab .. 'backward: ' .. tostring(self:getBackward()):gsub(line, line .. tab .. ext)
str = str .. line .. tab .. 'merge: ' .. tostring(self:get(1):get(2)):gsub(line, line .. tab .. ext)
str = str .. line .. '}'
return str
end