-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathMaskZeroCriterion.lua
91 lines (80 loc) · 3.14 KB
/
MaskZeroCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
------------------------------------------------------------------------
--[[ MaskZeroCriterion ]]--
-- Decorator that zeros err and gradInputs of the encapsulated criterion
-- for commensurate input rows which are tensors of zeros
------------------------------------------------------------------------
local MaskZeroCriterion, parent = torch.class("nn.MaskZeroCriterion", "nn.Criterion")
function MaskZeroCriterion:__init(criterion, v1)
parent.__init(self)
self.criterion = assert(criterion)
assert(torch.isTypeOf(criterion, 'nn.Criterion'))
self.v2 = not v1
end
function MaskZeroCriterion:updateOutput(input, target)
if self.v2 then
assert(self.zeroMask ~= nil, "MaskZeroCriterion expecting zeroMask tensor or false")
if self.zeroMask == false then
self.output = self.criterion:updateOutput(input, target)
return self.output
end
assert(self.zeroMask:dim() == 1, "MaskZeroCriterion expecting zeroMask of size batchsize")
else -- backwards compat
self.zeroMask = nn.utils.getZeroMaskBatch(input, self.zeroMask)
end
self.isEmptyBatch = (self.zeroMask:sum() == self.zeroMask:nElement())
if self.isEmptyBatch then
self.output = 0
else
local first = nn.utils.recursiveGetFirst(input)
-- e.g. 0,1,0 -> 1,0,1
self._oneMask = self._oneMask or self.zeroMask.new()
self._oneMask:lt(self.zeroMask, 1)
-- 1,0,1 -> 1,3
self._indices = self._indices or torch.isCudaTensor(first) and torch.CudaLongTensor() or torch.LongTensor()
self._range = self._range or self._indices.new()
self._range:range(1,self._oneMask:nElement())
self._indices:maskedSelect(self._range, self._oneMask)
-- indexSelect the input
self.input = nn.utils.recursiveIndex(self.input, input, 1, self._indices)
self.target = nn.utils.recursiveIndex(self.target, target, 1, self._indices)
-- forward through decorated criterion
self.output = self.criterion:updateOutput(self.input, self.target)
end
return self.output
end
function MaskZeroCriterion:updateGradInput(input, target)
if self.zeroMask == false then
self.gradInput = self.criterion:updateGradInput(input, target)
return self.gradInput
end
self._gradInput = nn.utils.recursiveResizeAs(self._gradInput, input)
nn.utils.recursiveFill(self._gradInput, 0)
if not self.isEmptyBatch then
assert(self.input and self.target)
local gradInput = self.criterion:updateGradInput(self.input, self.target)
nn.utils.recursiveIndexCopy(self._gradInput, 1, self._indices, gradInput)
end
self.gradInput = self._gradInput
return self.gradInput
end
function MaskZeroCriterion:clearState()
self.zeroMask = nil
self._oneMask = nil
self._range = nil
self._indices = nil
self.input = nil
self.target = nil
self.output = nil
self.gradInput = nil
self._gradInput = nil
self.criterion:clearState()
return parent.clearState(self)
end
function MaskZeroCriterion:type(type, ...)
self:clearState()
self.criterion:type(type, ...)
return parent.type(self, type, ...)
end
function MaskZeroCriterion:setZeroMask(zeroMask)
self.zeroMask = zeroMask
end