-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathSeqGRU.lua
310 lines (248 loc) · 10.6 KB
/
SeqGRU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
--[[
The MIT License (MIT)
Copyright (c) 2016 Stéphane Guillitte, Joost van Doorn
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--]]
local SeqGRU, parent = torch.class('nn.SeqGRU', 'nn.Module')
--[[
If we add up the sizes of all the tensors for output, gradInput, weights,
gradWeights, and temporary buffers, we get that a SequenceGRU stores this many
scalar values:
NTD + 4NTH + 5NH + 6H^2 + 6DH + 7H
Note that this class doesn't own input or gradOutput, so you'll
see a bit higher memory usage in practice.
--]]
function SeqGRU:__init(inputsize, outputsize)
parent.__init(self)
self.inputsize = inputsize
self.outputsize = outputsize
self.weight = torch.Tensor(inputsize + outputsize, 3 * outputsize)
self.gradWeight = torch.Tensor(inputsize + outputsize, 3 * outputsize):zero()
self.bias = torch.Tensor(3 * outputsize)
self.gradBias = torch.Tensor(3 * outputsize):zero()
self:reset()
self.gates = torch.Tensor() -- This will be (T, N, 3H)
self.buffer1 = torch.Tensor() -- This will be (N, H)
self.buffer2 = torch.Tensor() -- This will be (N, H)
self.buffer3 = torch.Tensor() -- This will be (H,)
self.grad_a_buffer = torch.Tensor() -- This will be (N, 3H)
self.h0 = torch.Tensor()
self._remember = 'neither'
-- set this to true for variable length sequences that seperate
-- independent sequences with a step of zeros (a tensor of size D)
self.maskzero = false
self.v2 = true
end
SeqGRU.reset = nn.StepGRU.reset
SeqGRU.zeroMaskState = nn.SeqLSTM.zeroMaskState
SeqGRU.checkZeroMask = nn.SeqLSTM.checkZeroMask
--[[
Input:
- h0: Initial hidden state, (N, H)
- x: Input sequence, (T, N, D)
Output:
- h: Sequence of hidden states, (T, N, H)
--]]
function SeqGRU:updateOutput(input)
self.recompute_backward = true
assert(torch.isTensor(input))
local seqlen, batchsize = input:size(1), input:size(2)
local inputsize, outputsize = self.inputsize, self.outputsize
self:checkZeroMask(seqlen, batchsize)
-- remember previous state?
local remember = self:hasMemory()
local h0 = self.h0
if (h0:nElement() ~= batchsize * outputsize) or not remember then
h0:resize(batchsize, outputsize):zero()
elseif remember then
assert(self.output:size(2) == batchsize, 'batch sizes must be the same to remember states')
h0:copy(self.output[self.output:size(1)])
end
local h = self.output
h:resize(seqlen, batchsize, outputsize):zero()
local nElement = self.gates:nElement()
self.gates:resize(seqlen, batchsize, 3 * outputsize)
if nElement ~= seqlen * batchsize * 3 * outputsize then
self.gates:zero()
end
local prev_h = h0
if input.nn and input.nn.StepGRU_updateOutput and not self.forceLua then
for t = 1, seqlen do
local cur_x, next_h, gates = input[t], h[t], self.gates[t]
cur_x.nn.StepGRU_updateOutput(self.weight, self.bias,
gates, cur_x, prev_h,
inputsize, outputsize,
next_h)
self:zeroMaskState({next_h, gates}, t, cur_x)
prev_h = next_h
end
else
local bias_expand = self.bias:view(1, 3 * outputsize):expand(batchsize, 3 * outputsize)
local Wx = self.weight[{{1, inputsize}}]
local Wh = self.weight[{{inputsize + 1, inputsize + outputsize}}]
for t = 1, seqlen do
local cur_x, next_h, cur_gates = input[t], h[t], self.gates[t]
cur_gates:addmm(bias_expand, cur_x, Wx)
cur_gates[{{}, {1, 2 * outputsize}}]:addmm(prev_h, Wh[{{}, {1, 2 * outputsize}}])
cur_gates[{{}, {1, 2 * outputsize}}]:sigmoid()
local r = cur_gates[{{}, {1, outputsize}}] --reset gate : r = sig(Wx * x + Wh * prev_h + b)
local u = cur_gates[{{}, {outputsize + 1, 2 * outputsize}}] --update gate : u = sig(Wx * x + Wh * prev_h + b)
next_h:cmul(r, prev_h) --temporary buffer : r . prev_h
cur_gates[{{}, {2 * outputsize + 1, 3 * outputsize}}]:addmm(next_h, Wh[{{}, {2 * outputsize + 1, 3 * outputsize}}]) -- hc += Wh * r . prev_h
local hc = cur_gates[{{}, {2 * outputsize + 1, 3 * outputsize}}]:tanh() --hidden candidate : hc = tanh(Wx * x + Wh * r . prev_h + b)
next_h:addcmul(hc, -1, u, hc)
next_h:addcmul(u, prev_h) --next_h = (1-u) . hc + u . prev_h
self:zeroMaskState({next_h, cur_gates}, t, cur_x)
prev_h = next_h
end
end
return self.output
end
function SeqGRU:backward(input, gradOutput, scale)
self.recompute_backward = false
scale = scale or 1.0
assert(scale == 1.0, 'must have scale=1')
local seqlen, batchsize = input:size(1), input:size(2)
local inputsize, outputsize = self.inputsize, self.outputsize
local h = self.output
self.buffer1:resizeAs(self.h0)
self.gradInput:resizeAs(input):zero()
local grad_next_h = self.grad_hT or self.buffer1:zero()
if input.nn and input.nn.StepGRU_backward and not self.forceLua then
for t = seqlen, 1, -1 do
local cur_x, next_h = input[t], h[t]
local prev_h = (t == 1) and self.h0 or h[t - 1]
grad_next_h:add(gradOutput[t])
self:zeroMaskState(grad_next_h, t, cur_x)
cur_x.nn.StepGRU_backward(self.weight, self.gates[t],
self.gradWeight, self.gradBias, self.grad_a_buffer, self.buffer3,
cur_x, prev_h, grad_next_h,
scale, inputsize, outputsize,
self.gradInput[t], grad_next_h)
end
else
local Wx = self.weight:narrow(1,1,inputsize)
local Wh = self.weight:narrow(1,inputsize+1,outputsize)
local grad_Wx = self.gradWeight:narrow(1,1,inputsize)
local grad_Wh = self.gradWeight:narrow(1,inputsize+1,outputsize)
local grad_b = self.gradBias
local temp_buffer = self.buffer2:resize(batchsize, outputsize)
for t = seqlen, 1, -1 do
local cur_x, next_h = input[t], h[t]
local prev_h = (t == 1) and self.h0 or h[t - 1]
grad_next_h:add(gradOutput[t])
self:zeroMaskState(grad_next_h, t, cur_x)
local r = self.gates[{t, {}, {1, outputsize}}]
local u = self.gates[{t, {}, {outputsize + 1, 2 * outputsize}}]
local hc = self.gates[{t, {}, {2 * outputsize + 1, 3 * outputsize}}]
local grad_a = self.grad_a_buffer:resize(batchsize, 3 * outputsize)
local grad_ar = grad_a[{{}, {1, outputsize}}]
local grad_au = grad_a[{{}, {outputsize + 1, 2 * outputsize}}]
local grad_ahc = grad_a[{{}, {2 * outputsize + 1, 3 * outputsize}}]
-- use grad_au as temporary buffer to compute grad_ahc.
local grad_hc = grad_au:fill(0):addcmul(grad_next_h, -1, u, grad_next_h)
grad_ahc:fill(1):addcmul(-1, hc, hc):cmul(grad_hc)
local grad_r = grad_au:fill(0):addmm(grad_ahc, Wh[{{}, {2 * outputsize + 1, 3 * outputsize}}]:t() ):cmul(prev_h)
grad_ar:fill(1):add(-1, r):cmul(r):cmul(grad_r)
temp_buffer:fill(0):add(-1, hc):add(prev_h)
grad_au:fill(1):add(-1, u):cmul(u):cmul(temp_buffer):cmul(grad_next_h)
self.gradInput[t]:mm(grad_a, Wx:t())
grad_Wx:addmm(scale, cur_x:t(), grad_a)
grad_Wh[{{}, {1, 2 * outputsize}}]:addmm(scale, prev_h:t(), grad_a[{{}, {1, 2 * outputsize}}])
local grad_a_sum = self.buffer3:resize(outputsize):sum(grad_a, 1)
grad_b:add(scale, grad_a_sum)
temp_buffer:fill(0):add(prev_h):cmul(r)
grad_Wh[{{}, {2 * outputsize + 1, 3 * outputsize}}]:addmm(scale, temp_buffer:t(), grad_ahc)
grad_next_h:cmul(u)
grad_next_h:addmm(grad_a[{{}, {1, 2 * outputsize}}], Wh[{{}, {1, 2 * outputsize}}]:t())
temp_buffer:fill(0):addmm(grad_a[{{}, {2 * outputsize + 1, 3 * outputsize}}], Wh[{{}, {2 * outputsize + 1, 3 * outputsize}}]:t()):cmul(r)
grad_next_h:add(temp_buffer)
end
end
return self.gradInput
end
function SeqGRU:clearState()
self.gates:set()
self.buffer1:set()
self.buffer2:set()
self.buffer3:set()
self.grad_a_buffer:set()
self.output:set()
self.gradInput:set()
self.zeroMask = nil
end
function SeqGRU:updateGradInput(input, gradOutput)
if self.recompute_backward then
self:backward(input, gradOutput, 1.0)
end
return self.gradInput
end
function SeqGRU:forget()
self.h0:resize(0)
end
function SeqGRU:accGradParameters(input, gradOutput, scale)
if self.recompute_backward then
self:backward(input, gradOutput, scale)
end
end
function SeqGRU:type(type, ...)
self.zeroMask = nil
self._zeroMask = nil
self._maskbyte = nil
self._maskindices = nil
return parent.type(self, type, ...)
end
SeqGRU.remember = nn.AbstractSequencer.remember
SeqGRU.hasMemory = nn.AbstractSequencer.hasMemory
SeqGRU.training = nn.SeqLSTM.training
SeqGRU.evaluate = nn.SeqLSTM.evaluate
SeqGRU.maskZero = nn.StepGRU.maskZero
SeqGRU.setZeroMask = nn.MaskZero.setZeroMask
SeqGRU.__tostring__ = nn.StepGRU.__tostring__
function SeqGRU:setStartState(hiddenState)
self.h0:resizeAs(hiddenState):copy(hiddenState)
end
function SeqGRU:setHiddenState(step, hiddenState)
if step == 0 then
self:setStartState(hiddenState)
else
error"NotImplemented"
end
end
function SeqGRU:getHiddenState()
error"NotImplemented"
end
function SeqGRU:setGradHiddenState()
error"NotImplemented"
end
function SeqGRU:getGradHiddenState()
error"NotImplemented"
end
-- used by unit tests
function SeqGRU:toRecGRU()
assert(not self.weightO)
local gru = nn.RecGRU(self.inputsize, self.outputsize)
local stepgru = gru.modules[1]
stepgru.weight:copy(self.weight)
stepgru.bias:copy(self.bias)
stepgru.gradWeight:copy(self.gradWeight)
stepgru.gradBias:copy(self.gradBias)
if self.maskzero then
gru:maskZero()
end
return gru
end