-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrecurrent-time-series.lua
122 lines (96 loc) · 3.58 KB
/
recurrent-time-series.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
-- Multi-variate time-series example
require 'rnn'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a multivariate time-series model using RNN')
cmd:option('--seqlen', 5, 'maximum number of time steps for back-propagate through time (BPTT)')
cmd:option('--multiSize', 6, 'number of random variables as input and output')
cmd:option('--hiddenSize', 10, 'number of hidden units used at output of the recurrent layer')
cmd:option('--dataSize', 100, 'total number of time-steps in dataset')
cmd:option('--batchSize', 8, 'number of training samples per batch')
cmd:option('--nIterations', 1000, 'max number of training iterations')
cmd:option('--learningRate', 0.001, 'learning rate')
cmd:option('--plot', false, 'plot the errors during training?')
cmd:text()
local opt = cmd:parse(arg or {})
if opt.plot then
require 'optim'
logger = optim.Logger(paths.concat('outputs', 'rects_log.txt'))
end
-- For simplicity, the multi-variate dataset in this example is independently distributed.
-- Toy dataset (task is to predict next vector, given previous vectors) following the normal distribution .
-- Generated by sampling a separate normal distribution for each random variable.
-- note: vX is used as both input X and output Y to save memory
local function evalPDF(vMean, vSigma, vX)
for i=1,vMean:size(1) do
local b = (vX[i]-vMean[i])/vSigma[i]
vX[i] = math.exp(-b*b/2)/(vSigma[i]*math.sqrt(2*math.pi))
end
return vX
end
assert(opt.multiSize > 1, "Multi-variate time-series")
vBias = torch.randn(opt.multiSize)
vMean = torch.Tensor(opt.multiSize):fill(5)
vSigma = torch.linspace(1,opt.multiSize,opt.multiSize)
sequence = torch.Tensor(opt.dataSize, opt.multiSize)
j = 0
for i=1,opt.dataSize do
sequence[{i,{}}]:fill(j)
evalPDF(vMean, vSigma, sequence[{i,{}}])
sequence[{i,{}}]:add(vBias)
j = j + 1
if j>10 then j = 0 end
end
print('Sequence:'); print(sequence)
-- batch mode
offsets = torch.LongTensor(opt.batchSize):random(1,opt.dataSize)
-- Simple RNN
rnn = nn.Sequential()
:add(nn.LinearRNN(opt.multiSize, opt.hiddenSize))
:add(nn.Linear(opt.hiddenSize, opt.multiSize))
criterion = nn.MSECriterion()
-- use Sequencer for better data handling
rnn = nn.Sequencer(rnn)
criterion = nn.SequencerCriterion(criterion)
print("Model :")
print(rnn)
-- train rnn model
minErr = opt.multiSize -- report min error
minK = 0
avgErrs = torch.Tensor(opt.nIterations):fill(0)
for k = 1, opt.nIterations do
-- 1. create a sequence of seqlen time-steps
local inputs, targets = {}, {}
for step = 1, opt.seqlen do
-- batch of inputs
inputs[step] = inputs[step] or sequence.new()
inputs[step]:index(sequence, 1, offsets)
-- batch of targets
offsets:add(1) -- increase indices by 1
offsets[offsets:gt(opt.dataSize)] = 1
targets[step] = targets[step] or sequence.new()
targets[step]:index(sequence, 1, offsets)
end
-- 2. forward sequence through rnn
local outputs = rnn:forward(inputs)
local err = criterion:forward(outputs, targets)
-- report errors
print('Iter: ' .. k .. ' Err: ' .. err)
if opt.plot then
logger:add{['Err'] = err}
logger:style{['Err'] = '-'}
logger:plot()
end
avgErrs[k] = err
if avgErrs[k] < minErr then
minErr = avgErrs[k]
minK = k
end
-- 3. backward sequence through rnn (i.e. backprop through time)
rnn:zeroGradParameters()
local gradOutputs = criterion:backward(outputs, targets)
local gradInputs = rnn:backward(inputs, gradOutputs)
-- 4. updates parameters
rnn:updateParameters(opt.learningRate)
end
print('min err: ' .. minErr .. ' on iteration ' .. minK)