-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtwitter-sentiment-rnn.lua
302 lines (268 loc) · 9.16 KB
/
twitter-sentiment-rnn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
--[[
Script to train twitter sentiment classifier using the Twitter Sentiment
data loader.
-]]
require 'paths'
require 'optim'
require 'rnn'
require 'cutorch'
require 'cunn'
local dl = require 'dataload'
torch.setdefaulttensortype("torch.FloatTensor")
--[[ Command line arguments --]]
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a LSTM based sentiments classifier on Twitter dataset.')
cmd:text('Options:')
-- Data
cmd:option('--datapath', '/data/Twitter/', 'Path to Twitter data.')
cmd:option('--seqLen', 25, 'Sequence Length. BPTT for this many time steps.')
cmd:option('--minFreq', 10, 'Min freq for a word to be considered in vocab.')
cmd:option('--validRatio', 0.2, 'Part of trainSet to be used as validSet.')
cmd:option('--lookupDim', 128, 'Lookup feature dimensionality.')
cmd:option('--lookupDropout', 0, 'Lookup feature dimensionality.')
cmd:option('--hiddenSizes', '{256, 256}', 'Hidden size for LSTM.')
cmd:option('--dropouts', '{0, 0}', 'Dropout on hidden representations.')
cmd:option('--useCuda', false, 'Use GPU for training.')
cmd:option('--deviceId', 1, 'Device Id.')
cmd:option('--batchSize', 128, 'number of examples per batch')
cmd:option('--epochs', 1000, 'maximum number of epochs to run')
cmd:option('--earlyStopThresh', 50, 'Early stopping threshold.')
cmd:option('--adam', false, 'Use Adaptive moment estimation optimizer.')
cmd:option('--learningRate', 0.001, 'Learning rate.')
cmd:option('--learningRateDecay', 1e-7, 'Learning rate decay.')
cmd:option('--momentum', 0, 'Momentum')
cmd:option('--loadModel', false, 'Load pretrained model and train further.')
cmd:option('--modelpath', '', 'Pre trained model path.')
cmd:option('--useOldOpt', false, 'Use old command line options.')
cmd:option('--savepath', paths.concat(dl.SAVE_PATH, 'Twitter'),
'path to directory where experiment log (includes model) will be saved')
cmd:text()
local opt = cmd:parse(arg or {})
print(opt)
-- Loading pretrained model and corresponding options if required.
if opt.loadModel then
print("Loading pretrained model")
local modelpath = opt.modelpath
model = torch.load(modelpath)
model = model:float()
if opt.useOldOpt then
print("Loading corresponding options")
opt = torch.load(opt.modelpath..".opt")
opt.useOldOpt = true
end
opt.modelpath = modelpath
modelPath = opt.modelpath
opt.loadModel = true
end
-- Data
datapath = opt.datapath
savepath = opt.savepath
paths.mkdir(savepath)
seqLen = opt.seqLen
minFreq = opt.minFreq
validRatio = opt.validRatio
classes = {'Negative', 'Positive'}
trainSet, validSet, testSet = dl.loadSentiment140(datapath, minFreq,
seqLen, validRatio)
-- Model
if not opt.loadModel then
print("Building model")
modelPath = paths.concat(savepath,
"Sentiment140_model_" .. dl.uniqueid() .. ".net")
lookupDim = tonumber(opt.lookupDim)
lookupDropout = tonumber(opt.lookupDropout)
hiddenSizes = loadstring(" return " .. opt.hiddenSizes)()
dropouts = loadstring(" return " .. opt.dropouts)()
model = nn.Sequential()
-- Transpose, such that input is seqLen x batchSize
model:add(nn.Transpose({1,2}))
-- LookupTable
local lookup = nn.LookupTableMaskZero(#trainSet.ivocab, lookupDim)
model:add(lookup)
if lookupDropout ~= 0 then model:add(nn.Dropout(lookupDropout)) end
-- Recurrent layers
local inputSize = lookupDim
for i, hiddenSize in ipairs(hiddenSizes) do
model:add(nn.SeqLSTM(inputSize, hiddenSize):maskZero(true))
if dropouts[i] ~= 0 and dropouts[i] ~= nil then
model:add(nn.Dropout(dropouts[i]))
end
inputSize = hiddenSize
end
model:add(nn.Select(1, -1))
-- Output Layer
model:add(nn.Linear(hiddenSizes[#hiddenSizes], #classes))
model:add(nn.LogSoftMax())
-- Save options
optionsPath = modelPath .. ".opt"
torch.save(optionsPath, opt)
end
print("Model path: " .. modelPath)
collectgarbage()
-- Criterion
criterion = nn.ClassNLLCriterion()
-- Training
useCuda = opt.useCuda
deviceId = opt.deviceId
batchSize = opt.batchSize
epochs = opt.epochs
earlyStopThresh = opt.earlyStopThresh
epochSize = trainSet:size()
adam = opt.adam
learningRate = opt.learningRate
learningRateDecay = opt.learningRateDecay
momentum = opt.momentum
if useCuda then
print("Using GPU:"..deviceId)
cutorch.setDevice(deviceId)
print("GPU set")
model:cuda()
print("Model copied to CUDA")
criterion:cuda()
print("Criterion copied to CUDA")
else
print("Not using GPU")
end
print(model)
-- Confusion Matrix
confusion = optim.ConfusionMatrix(classes)
-- Retrieve parameters and gradients
parameters, gradParameters = model:getParameters()
-- Optimizers: Using SGD/ADAM [Stocastic Gradient Descent]
optimState = {
learningRate = learningRate,
momentum = momentum,
learningRateDecay = learningRateDecay
}
if adam then
print("Using Adaptive moment estimation.")
optimMethod = optim.adam
else
print("Using Stocastic gradient descent")
optimMethod = optim.sgd
end
print(optimState)
-- Variables for intermediate data
trainInputs = useCuda and torch.CudaTensor() or torch.FloatTensor()
trainTargets = useCuda and torch.CudaTensor() or torch.FloatTensor()
local conTargets, conOutputs
best_valid_accu = 0
best_valid_model = nn.Sequential()
best_train_accu = 0
best_train_model = nn.Sequential()
trainLoss = 0
validLoss = 0
earlyStopCount = 0
for epoch=1, epochs do
-- Single training epoch
trainLoss = 0
confusion:zero()
model:training()
for i, inputs, targets in trainSet:sampleiter(batchSize, epochSize) do
xlua.progress(i, epochSize)
trainInputs:resize(inputs:size()):copy(inputs)
trainTargets:resize(targets:size()):copy(targets)
local feval = function()
gradParameters:zero()
-- Forward
local outputs = model:forward(trainInputs)
local f = criterion:forward(outputs, trainTargets)
trainLoss = trainLoss + f
-- Backward
local df_do = criterion:backward(outputs, trainTargets)
model:backward(trainInputs, df_do)
if useCuda then
conOutputs = outputs:float()
conTargets = trainTargets:float()
else
conOutputs = outputs
conTargets = trainTargets
end
confusion:batchAdd(conOutputs, conTargets)
return f, gradParameters
end
optimMethod(feval, parameters, optimState)
end
confusion:updateValids()
if best_train_accu < confusion.totalValid then
print("Best train accuracy: ".. best_train_accu ..
" current accu: ".. confusion.totalValid)
best_train_accu = confusion.totalValid
--best_train_model = model:clone()
end
-- Validation accuracy
validLoss = 0
model:evaluate()
confusion:zero()
for i, inputs, targets in validSet:sampleiter(batchSize, validSet:size()) do
trainInputs:resize(inputs:size()):copy(inputs)
trainTargets:resize(targets:size()):copy(targets)
local outputs = model:forward(trainInputs)
local f = criterion:forward(outputs, trainTargets)
validLoss = validLoss + f
if useCuda then
conOutputs = outputs:float()
conTargets = trainTargets:float()
else
conOutputs = outputs
conTargets = trainTargets
end
confusion:batchAdd(conOutputs, conTargets)
end
confusion:updateValids()
if best_valid_accu < confusion.totalValid then
print("Best valid accuracy: ".. best_valid_accu ..
" current accu: ".. confusion.totalValid)
best_valid_accu = confusion.totalValid
earlyStopCount = 0
best_valid_model = model:clone()
best_valid_model:clearState()
torch.save(modelPath, best_valid_model)
-- Compute corresponding testing accuracy
model:evaluate()
confusion:zero()
for i, inputs, targets in testSet:sampleiter(batchSize, testSet:size()) do
trainInputs:resize(inputs:size()):copy(inputs)
trainTargets:resize(targets:size()):copy(targets)
local outputs = model:forward(trainInputs)
if useCuda then
conOutputs = outputs:float()
conTargets = trainTargets:float()
else
conOutputs = outputs
conTargets = trainTargets
end
confusion:batchAdd(conOutputs, conTargets)
end
confusion:updateValids()
print("TestSet confusion")
print(confusion)
else
earlyStopCount = earlyStopCount + 1
end
if earlyStopCount >= earlyStopThresh then
print("Early stopping at epoch: " .. tostring(epoch))
break
end
end
-- Testing Accuracy
model = best_valid_model
model:evaluate()
confusion:zero()
for i, inputs, targets in testSet:sampleiter(batchSize, testSet:size()) do
trainInputs:resize(inputs:size()):copy(inputs)
trainTargets:resize(targets:size()):copy(targets)
local outputs = model:forward(trainInputs)
if useCuda then
conOutputs = outputs:float()
conTargets = trainTargets:float()
else
conOutputs = outputs
conTargets = trainTargets
end
confusion:batchAdd(conOutputs, conTargets)
end
confusion:updateValids()
print("Best validation model TestSet confusion:")
print(confusion)