-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
34 lines (26 loc) · 1.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from config import RESULTS_DIR
from src.common.utils import create_nested_folders
from src.prepare_bias_and_ece import save_bias_and_ece, save_bias_and_ece_per_glioma_type
from src.results_scatter_plot import plot_scatter_all_methods, correlation_lgg_hgg
from src.results_colormap_scatter_plots import plot_colormap_scatter
from src.results_separate_images import save_images_for_plotting, plot_separate_images
from src.results_tables import format_table_bias_ece, format_table_correlation, format_table_hgg_vs_lgg
n_folds = 5
tumor_splits = 3
nr_bins = 20
kernel_sizes = [1, 5]
losses = ["CE", "CE-SD", "SD"]
datasets = ['BRATS_2018', "ISLES_2018"]
if __name__ == '__main__':
result_path = create_nested_folders(RESULTS_DIR, ['ece_vs_bias'])
save_bias_and_ece(kernel_sizes, nr_bins, result_path, datasets)
result_path_hgg_lgg = create_nested_folders(RESULTS_DIR, ['ece_vs_bias_hgg_lgg'])
save_bias_and_ece_per_glioma_type(kernel_sizes, nr_bins, result_path_hgg_lgg)
plot_scatter_all_methods(result_path, datasets)
correlation_lgg_hgg(result_path_hgg_lgg, datasets[0])
plot_colormap_scatter(result_path, datasets, losses)
save_images_for_plotting()
plot_separate_images(result_path, datasets)
format_table_bias_ece(result_path, datasets, losses)
format_table_correlation(result_path, datasets, losses, 'per_volume', 'spearman')
format_table_hgg_vs_lgg(result_path, datasets, losses, 'per_volume')