|
| 1 | +use burn::{prelude::Backend, tensor::Tensor}; |
| 2 | +/// Broadcast two tensors with potentially different static ranks to a common rank. |
| 3 | +/// |
| 4 | +/// # Syntax |
| 5 | +/// ```ignore |
| 6 | +/// broadcast!( |
| 7 | +/// a: Tensor<Backend, RANK_A>, |
| 8 | +/// b: Tensor<Backend, RANK_B> |
| 9 | +/// ) |
| 10 | +/// ``` |
| 11 | +/// |
| 12 | +/// # Parameters |
| 13 | +/// - `a`: Identifier for the first tensor variable (e.g., `a`). |
| 14 | +/// - `backend`: The backend type used in the first tensor (e.g., `MyBackend`). |
| 15 | +/// - `dims1`: The static rank of the first tensor (e.g., `2`, `3`, etc.). |
| 16 | +/// |
| 17 | +/// - `b`: Identifier for the second tensor variable (e.g., `b`). |
| 18 | +/// - `backend`: The backend type used in the second tensor (must match `backend` for correctness). |
| 19 | +/// - `dims2`: The static rank of the second tensor. |
| 20 | +/// |
| 21 | +/// # Expansion |
| 22 | +/// Expands to: |
| 23 | +/// ```rust |
| 24 | +/// { |
| 25 | +/// const N: usize = max(dims1, dims2); |
| 26 | +/// broadcast::<B, N, dims1, dims2>(a, b) |
| 27 | +/// } |
| 28 | +/// ``` |
| 29 | +/// |
| 30 | +/// # Example |
| 31 | +/// ```rust |
| 32 | +/// let a: Tensor<MyBackend, 2> = ...; |
| 33 | +/// let b: Tensor<MyBackend, 4> = ...; |
| 34 | +/// |
| 35 | +/// let result = broadcast!( |
| 36 | +/// a: Tensor<MyBackend, 2>, |
| 37 | +/// b: Tensor<MyBackend, 4> |
| 38 | +/// ); |
| 39 | +/// // Expands to: broadcast::<MyBackend, 4, 2, 4>(a, b) |
| 40 | +/// ``` |
| 41 | +/// |
| 42 | +#[macro_export] |
| 43 | +macro_rules! broadcast { |
| 44 | + ( |
| 45 | + $a:ident : Tensor<$backend1:ty, $dims1:tt>, |
| 46 | + $b:ident : Tensor<$backend2:ty, $dims2:tt> |
| 47 | + ) => {{ |
| 48 | + use $crate::ops::broadcast_op; |
| 49 | + const fn max(a: usize, b: usize) -> usize { |
| 50 | + if a > b { a } else { b } |
| 51 | + } |
| 52 | + |
| 53 | + const N: usize = max($dims1, $dims2); |
| 54 | + |
| 55 | + broadcast_op::<$backend1, N, $dims1, $dims2>($a, $b) |
| 56 | + }}; |
| 57 | +} |
| 58 | + |
| 59 | +#[macro_export] |
| 60 | +macro_rules! add_broadcast { |
| 61 | + ( |
| 62 | + $a:ident : Tensor<$backend1:ty, $dims1:tt>, |
| 63 | + $b:ident : Tensor<$backend2:ty, $dims2:tt> |
| 64 | + ) => {{ |
| 65 | + use $crate::ops::broadcast_op; |
| 66 | + const fn max(a: usize, b: usize) -> usize { |
| 67 | + if a > b { a } else { b } |
| 68 | + } |
| 69 | + |
| 70 | + const N: usize = max($dims1, $dims2); |
| 71 | + |
| 72 | + let (a,b) = broadcast_op::<$backend1, N, $dims1, $dims2>($a, $b); |
| 73 | + a.add(b) |
| 74 | + }}; |
| 75 | +} |
| 76 | + |
| 77 | +pub fn broadcast_op<B: Backend, const N: usize, const DA: usize, const DB: usize>( |
| 78 | + a: Tensor<B, DA>, |
| 79 | + b: Tensor<B, DB>, |
| 80 | +) -> (Tensor<B, N>, Tensor<B, N>) { |
| 81 | + // pad left with 1s |
| 82 | + |
| 83 | + let a = a.unsqueeze::<N>(); |
| 84 | + let b = b.unsqueeze::<N>(); |
| 85 | + |
| 86 | + let b_shape = b.shape().dims::<N>(); |
| 87 | + |
| 88 | + // Convert dims, change non 1 values to -1 and 1 values to corresponding tensor shape |
| 89 | + // for burn expand format |
| 90 | + |
| 91 | + // Make changes in b dimensions to match a dimensions and insert -1s |
| 92 | + |
| 93 | + let b_shape_new: Vec<i64> = a |
| 94 | + .shape() |
| 95 | + .dims::<N>() |
| 96 | + .iter_mut() |
| 97 | + .enumerate() |
| 98 | + .map( |
| 99 | + |(i, val)| { |
| 100 | + if b_shape[i] == 1 { *val as i64 } else { -1_i64 } |
| 101 | + }, |
| 102 | + ) |
| 103 | + .collect(); |
| 104 | + |
| 105 | + // Make changes in a dimensions to match b dimensions and insert -1s |
| 106 | + |
| 107 | + let a_shape = a.shape().dims::<N>(); |
| 108 | + |
| 109 | + let a_shape_new: Vec<i64> = b |
| 110 | + .shape() |
| 111 | + .dims::<N>() |
| 112 | + .iter_mut() |
| 113 | + .enumerate() |
| 114 | + .map( |
| 115 | + |(i, val)| { |
| 116 | + if a_shape[i] == 1 { *val as i64 } else { -1_i64 } |
| 117 | + }, |
| 118 | + ) |
| 119 | + .collect(); |
| 120 | + |
| 121 | + // Expand both tensors to match each other using the new shapes by |
| 122 | + // expanding tensors a and b using new shape with -1s inserted |
| 123 | + |
| 124 | + let b = b.expand::<N, [i64; N]>(b_shape_new.try_into().unwrap()); |
| 125 | + let a = a.expand::<N, [i64; N]>(a_shape_new.try_into().unwrap()); |
| 126 | + |
| 127 | + (a, b) |
| 128 | +} |
| 129 | + |
| 130 | +#[cfg(test)] |
| 131 | +mod tests { |
| 132 | + use burn::backend::ndarray::{NdArray, NdArrayDevice}; |
| 133 | + use super::*; |
| 134 | + |
| 135 | + #[test] |
| 136 | + fn test_broadcast_multi_dims() { |
| 137 | + let device = &NdArrayDevice::default(); |
| 138 | + type B = NdArray<f32>; |
| 139 | + |
| 140 | + let a = Tensor::<B, 6>::empty([7, 6, 2, 3, 1, 9], device); |
| 141 | + let b = Tensor::<B, 4>::empty([2, 1, 7, 1], device); |
| 142 | + |
| 143 | + let (a, b) = broadcast!(a: Tensor<B, 6>, b: Tensor<B, 4>); |
| 144 | + |
| 145 | + assert_eq!(a.shape(), b.shape()); |
| 146 | + } |
| 147 | + |
| 148 | + #[test] |
| 149 | + fn test_broadcast_multi_dims_values() { |
| 150 | + let device = &NdArrayDevice::default(); |
| 151 | + type B = NdArray<f32>; |
| 152 | + |
| 153 | + let a = Tensor::<B, 3>::from_data( |
| 154 | + [ |
| 155 | + [[2, 8, 7, 2], [9, 14, 13, 12], [9, 14, 13, 12]], |
| 156 | + [[2, 8, 7, 2], [9, 14, 13, 12], [9, 14, 13, 12]], |
| 157 | + ], |
| 158 | + device, |
| 159 | + ); |
| 160 | + |
| 161 | + let b = Tensor::<B, 2>::from_data([[4, 11, 10, 5]], device); |
| 162 | + |
| 163 | + let (a, b) = broadcast!(a:Tensor<B, 3>, b:Tensor<B, 2>); |
| 164 | + |
| 165 | + let a_add_b = a.add(b); |
| 166 | + |
| 167 | + Tensor::<B, 3>::from_data( |
| 168 | + [ |
| 169 | + [[6, 19, 17, 7], [13, 25, 23, 17], [13, 25, 23, 17]], |
| 170 | + [[6, 19, 17, 7], [13, 25, 23, 17], [13, 25, 23, 17]], |
| 171 | + ], |
| 172 | + device, |
| 173 | + ) |
| 174 | + .into_data() |
| 175 | + .assert_eq(&a_add_b.to_data(), true); |
| 176 | + } |
| 177 | + |
| 178 | + #[test] |
| 179 | + fn test_max_broadcast() { |
| 180 | + let device = &NdArrayDevice::default(); |
| 181 | + type B = NdArray<f32>; |
| 182 | + |
| 183 | + let a = Tensor::<B, 1>::from_data([3.0, 2.0, 6.0, 3.0], device); |
| 184 | + |
| 185 | + let b = Tensor::<B, 1>::from_data([1.0, 0.5, 4.0, 7.0], device); |
| 186 | + |
| 187 | + let a = a.reshape([-1, 1]); |
| 188 | + |
| 189 | + let (a, b) = broadcast!(a:Tensor<B, 2>, b:Tensor<B, 1>); |
| 190 | + |
| 191 | + let max_a_b = a.max_pair(b); |
| 192 | + |
| 193 | + Tensor::<B, 2>::from_data( |
| 194 | + [ |
| 195 | + [3.0, 3.0, 4.0, 7.0], |
| 196 | + [2.0, 2.0, 4.0, 7.0], |
| 197 | + [6.0, 6.0, 6.0, 7.0], |
| 198 | + [3.0, 3.0, 4.0, 7.0], |
| 199 | + ], |
| 200 | + device, |
| 201 | + ) |
| 202 | + .into_data() |
| 203 | + .assert_eq(&max_a_b.to_data(), true); |
| 204 | + } |
| 205 | + |
| 206 | + #[test] |
| 207 | + fn test_add_broadcast() { |
| 208 | + let device = &NdArrayDevice::default(); |
| 209 | + type B = NdArray<f32>; |
| 210 | + |
| 211 | + let a = Tensor::<B, 1>::from_data([1.1, 2.2, 3.3], device); |
| 212 | + |
| 213 | + let b = Tensor::<B, 1>::from_data([4.0, 5.0, 6.0, 7.0], device); |
| 214 | + |
| 215 | + let a = a.reshape([-1, 1]); |
| 216 | + |
| 217 | + let (a, b) = broadcast!(a:Tensor<B, 2>, b:Tensor<B, 1>); |
| 218 | + let add_a_b = a.add(b); |
| 219 | + |
| 220 | + Tensor::<B, 2>::from_data( |
| 221 | + [ |
| 222 | + [5.1, 6.1, 7.1, 8.1], |
| 223 | + [6.2, 7.2, 8.2, 9.2], |
| 224 | + [7.3, 8.3, 9.3, 10.3], |
| 225 | + ], |
| 226 | + device, |
| 227 | + ) |
| 228 | + .into_data() |
| 229 | + .assert_eq(&add_a_b.to_data(), true); |
| 230 | + |
| 231 | + let a = Tensor::<B, 1>::from_data([1.1, 2.2, 3.3], device); |
| 232 | + let b = Tensor::<B, 1>::from_data([4.0, 5.0, 6.0, 7.0], device); |
| 233 | + |
| 234 | + let b = b.reshape([-1, 1]); |
| 235 | + let (a, b) = broadcast!(a:Tensor<B, 1>, b:Tensor<B, 2>); |
| 236 | + let add_a_b = a.add(b); |
| 237 | + |
| 238 | + Tensor::<B, 2>::from_data( |
| 239 | + [ |
| 240 | + [5.1, 6.2, 7.3], |
| 241 | + [6.1, 7.2, 8.3], |
| 242 | + [7.1, 8.2, 9.3], |
| 243 | + [8.1, 9.2, 10.3], |
| 244 | + ], |
| 245 | + device, |
| 246 | + ) |
| 247 | + .into_data() |
| 248 | + .assert_eq(&add_a_b.to_data(), true); |
| 249 | + } |
| 250 | + |
| 251 | + #[test] |
| 252 | + fn test_max_broadcast_uneven() { |
| 253 | + let device = &NdArrayDevice::default(); |
| 254 | + type B = NdArray<f32>; |
| 255 | + |
| 256 | + let a = Tensor::<B, 1>::from_data([3.0, 2.0, 6.0, 3.0], device); |
| 257 | + |
| 258 | + let b = Tensor::<B, 1>::from_data([1.0, 0.5, 4.0, 7.0, 8.0], device); |
| 259 | + |
| 260 | + let b = b.reshape([-1, 1]); |
| 261 | + |
| 262 | + let (a, b) = broadcast!(a:Tensor<B, 1>, b:Tensor<B, 2>); |
| 263 | + |
| 264 | + let max_a_b = a.max_pair(b); |
| 265 | + |
| 266 | + Tensor::<B, 2>::from_data( |
| 267 | + [ |
| 268 | + [3.0, 2.0, 6.0, 3.0], |
| 269 | + [3.0, 2.0, 6.0, 3.0], |
| 270 | + [4.0, 4.0, 6.0, 4.0], |
| 271 | + [7.0, 7.0, 7.0, 7.0], |
| 272 | + [8.0, 8.0, 8.0, 8.0], |
| 273 | + ], |
| 274 | + device, |
| 275 | + ) |
| 276 | + .into_data() |
| 277 | + .assert_eq(&max_a_b.to_data(), true); |
| 278 | + } |
| 279 | + |
| 280 | + #[test] |
| 281 | + fn test_add_broadcast_diff_dims() { |
| 282 | + let device = &NdArrayDevice::default(); |
| 283 | + type B = NdArray<f32>; |
| 284 | + |
| 285 | + let a = Tensor::<B, 2>::from_data( |
| 286 | + [ |
| 287 | + [3.0, 2.0, 6.0, 3.0], |
| 288 | + [3.0, 2.0, 6.0, 3.0], |
| 289 | + [8.0, 7.0, 7.0, 13.0], |
| 290 | + ], |
| 291 | + device, |
| 292 | + ); |
| 293 | + |
| 294 | + let b = Tensor::<B, 1>::from_data([1.0, 0.5, 4.0, 7.0], device); |
| 295 | + let (a, b) = broadcast!(a:Tensor<B, 2>, b:Tensor<B, 1>); |
| 296 | + |
| 297 | + let add_a_b = a.add(b); |
| 298 | + |
| 299 | + Tensor::<B, 2>::from_data( |
| 300 | + [ |
| 301 | + [4.0, 2.5, 10.0, 10.0], |
| 302 | + [4.0, 2.5, 10.0, 10.0], |
| 303 | + [9.0, 7.5, 11.0, 20.0], |
| 304 | + ], |
| 305 | + device, |
| 306 | + ) |
| 307 | + .into_data() |
| 308 | + .assert_eq(&add_a_b.to_data(), true); |
| 309 | + } |
| 310 | +} |
0 commit comments