-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIRTA_Merge_Code.R
826 lines (682 loc) · 59.3 KB
/
IRTA_Merge_Code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
######################################################################################
######Doing a fresh merge
# to do: ------------------------------------------------------------------
# finish cleaning up the removed referrals
# load & merge all ruled out referrals and merge, including those in the individual 'Unsuccessful_Screens' tabs of the IRTA trackers
# clean up empty rows in referral tracker
# edit names to remove at end of script - update
############ script begins here: ----------------------------------------------------
# loading all IRTA trackers -----------------------------------------------
for(i in seq_along(current_IRTAs_full)) {
iter <- as.numeric(i)
# iter=7
IRTA_full <- current_IRTAs_full[iter]
IRTA_init <- current_IRTAs_init[iter]
##### checking IRTA column names
# temp_columns <- colnames(temp_active_data)
# assign(paste0(current_IRTAs_init[iter], "_col"), temp_columns)
# temp_columns %>% write.csv(file = paste0(IRTA_tracker_location,current_IRTAs_init[iter], "_col.csv"), na = " ", row.names = FALSE)
temp_active_data <- read_excel(paste0(referrals_location, IRTA_full, "/", IRTA_init, "_Patient_List.xlsx"), sheet = "Active_Participants") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker=IRTA_init)
assign(paste0(current_IRTAs_init[iter], "_active_data"), temp_active_data)
}
# REMOVED tracker
temp_active_data <- read_excel(paste0(IRTA_tracker_location, "/other_data_never_delete/REMOVED_Patient_List.xlsx"), sheet = "Active_Participants") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker="REMOVED")
# Jerry's tracker here
JM_active_data <- read_excel(paste0(string, "/Jerry's Folder/JM_Patient_List.xlsx"), sheet = "Active_Participants") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker="JM")
# merge & tidy up
irta_sets <- ls(pattern="_active_data")
irta_sets <- mget(irta_sets)
master_IRTA_template <- reduce(irta_sets, full_join) %>% mutate(Participant_Type2 = NA) %>% mutate(Age_at_visit = NA)
# loading all current screens ---------------------------------------------
for(u in seq_along(current_IRTAs_full)) {
iter6 <- as.numeric(u)
# iter6=1
IRTA_full <- current_IRTAs_full[iter6]
IRTA_init <- current_IRTAs_init[iter6]
temp_current_screens <- read_excel(paste0(referrals_location, IRTA_full, "/", IRTA_init, "_Patient_List.xlsx"), sheet = "Current_Screens") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker=IRTA_init)
assign(paste0(current_IRTAs_init[iter6], "_current_screens"), temp_current_screens)
}
# Jerry's tracker here
JM_current_screens <- read_excel(paste0(string, "/Jerry's Folder/JM_Patient_List.xlsx"), sheet = "Current_Screens") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker="JM")
# temp_current_screens <- read_excel(paste0(IRTA_tracker_location, "/other_data_never_delete/REMOVED_Patient_List.xlsx"), sheet = "Current_Screens") %>% mutate_all(as.character) %>% mutate(IRTA_tracker="REMOVED")
rm(temp_current_screens)
# merge & tidy up
irta_screen_sets <- ls(pattern="_current_screens")
irta_screen_sets <- mget(irta_screen_sets)
master_IRTA_screens_template <- reduce(irta_screen_sets, full_join) %>% mutate(Participant_Type2 = NA, Clinical_Visit_Number = NA, Clinical_Visit_Code = NA) %>% mutate(Age_at_visit = NA)
# loading all old and unsuccessful screens ---------------------------------------------
for(o in seq_along(current_IRTAs_full)) {
iter4 <- as.numeric(o)
# iter4=1
IRTA_full <- current_IRTAs_full[iter4]
IRTA_init <- current_IRTAs_init[iter4]
temp_old_screens <- read_excel(paste0(referrals_location, IRTA_full, "/", IRTA_init, "_Patient_List.xlsx"), sheet = "Unsuccessful_Screens") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker=IRTA_init)
assign(paste0(current_IRTAs_init[iter4], "_old_screens"), temp_old_screens)
}
temp_old_screens <- read_excel(paste0(IRTA_tracker_location, "/other_data_never_delete/REMOVED_Patient_List.xlsx"), sheet = "Unsuccessful_Screens") %>% mutate_all(as.character) %>% mutate(IRTA_tracker="REMOVED")
# Jerry's tracker here
JM_old_screens <- read_excel(paste0(string, "/Jerry's Folder/JM_Patient_List.xlsx"), sheet = "Unsuccessful_Screens") %>%
mutate_all(as.character) %>% mutate(IRTA_tracker="JM")
# merge & tidy up
irta_old_screen_sets <- ls(pattern="_old_screens")
irta_old_screen_sets <- mget(irta_old_screen_sets)
master_IRTA_old_screens_template <- reduce(irta_old_screen_sets, full_join) %>% mutate(Participant_Type2 = NA) %>% mutate(Age_at_visit = NA)
# reordering and creating date variables ----------------------------------
# reordering colunns based on list in following document
irta_tracker_columns <- read_excel(paste0(IRTA_tracker_location, "other_data_never_delete/irta_tracker_columns.xlsx")) %>% filter(include!="Overall_date")
master_IRTA_template <- master_IRTA_template %>% select(irta_tracker_columns$include)
master_IRTA_screens_template <- master_IRTA_screens_template %>% select(irta_tracker_columns$include)
master_IRTA_old_screens_template <- master_IRTA_old_screens_template %>% select(irta_tracker_columns$include)
# converting date variables to date format
date_variabes <- c("DOB", "Screening_Start_Date", "Referral_Date", "Consent_Date", "Clinical_Visit_Date", "Clinicals_date")
for(i in seq_len(max_tasks)) { date_variabes <- c(date_variabes, paste0("Task", i, "_Date"))}
master_IRTA_template[date_variabes] <- lapply(master_IRTA_template[date_variabes], as.Date, "%Y-%m-%d")
master_IRTA_screens_template[date_variabes] <- lapply(master_IRTA_screens_template[date_variabes], as.Date, "%Y-%m-%d")
master_IRTA_old_screens_template[date_variabes] <- lapply(master_IRTA_old_screens_template[date_variabes], as.Date, "%Y-%m-%d")
# creating an 'overall date' column, prioritizing clinic visit date for the main IRTA trackers, where this is missing, inserting the instead the task1 date
master_IRTA_template$Overall_date <- coalesce(master_IRTA_template$Clinical_Visit_Date, master_IRTA_template$Task1_Date)
# filling in demographic information for each participant & removing exact duplicates - master IRTA tracker
master_IRTA_reordered <- master_IRTA_template %>% filter(!is.na(Current)) %>% group_by(Initials) %>% arrange(Initials, Overall_date) %>%
fill(FIRST_NAME, LAST_NAME, SDAN:Handedness, Parent_CTSS_username:Metal, .direction = "down") %>%
fill(FIRST_NAME, LAST_NAME, SDAN:Handedness, Parent_CTSS_username:Metal, .direction = "up") %>%
ungroup() %>% distinct(., .keep_all = TRUE)
master_IRTA_reordered <- master_IRTA_reordered %>% group_by(Initials) %>% arrange(Initials, Overall_date) %>%
fill(Consent_Date, Protocol, Data_sharing, Clinicals, Clinicals_date, .direction = "down") %>%
ungroup() %>% distinct(., .keep_all = TRUE)
# creating an 'overall date' column, prioritizing referral date from the screening tabs of the IRTA trackers, where this is missing, inserting the screening start date instead
master_IRTA_screens_template$Overall_date <- coalesce(master_IRTA_screens_template$Referral_Date, master_IRTA_screens_template$Screening_Start_Date)
master_IRTA_old_screens_template$Overall_date <- coalesce(master_IRTA_old_screens_template$Referral_Date, master_IRTA_old_screens_template$Screening_Start_Date)
# arranging by referral date
master_IRTA_screens_reordered <- master_IRTA_screens_template %>% arrange(Initials, Overall_date)
master_IRTA_old_screens_reordered <- master_IRTA_old_screens_template %>% arrange(Overall_date)
# calculating age at visit - IRTA tracker
age_dummy <- master_IRTA_reordered %>% filter(!is.na(DOB)) %>% filter(!is.na(Overall_date)) %>%
select(FIRST_NAME, LAST_NAME, Initials, SDAN, DOB, Overall_date) %>% distinct(., .keep_all = TRUE)
age_dummy$Age_at_visit2 <- age_calc(dob = age_dummy$DOB, enddate = age_dummy$Overall_date, units = "years", precise = TRUE) %>% round(., digits = 2)
# merging age variable back into master dataset
master_IRTA_reordered$Age_at_visit <- as.numeric(master_IRTA_reordered$Age_at_visit)
master_IRTA_reordered <- left_join(master_IRTA_reordered, age_dummy, all=TRUE)
master_IRTA_reordered$Age_at_visit <- coalesce(master_IRTA_reordered$Age_at_visit, master_IRTA_reordered$Age_at_visit2)
master_IRTA_reordered <- master_IRTA_reordered %>% select(-Age_at_visit2)
# calculating age at visit - current referrals tracker
age_dummy_screens <- master_IRTA_screens_reordered %>% filter(!is.na(DOB)) %>% filter(!is.na(Overall_date)) %>%
select(FIRST_NAME, LAST_NAME, Initials, SDAN, DOB, Overall_date) %>% distinct(., .keep_all = TRUE)
age_dummy_screens$Age_at_visit2 <- age_calc(dob = age_dummy_screens$DOB, enddate = age_dummy_screens$Overall_date, units = "years", precise = TRUE) %>% round(., digits = 2)
# merging age variable back into master dataset
master_IRTA_screens_reordered$Age_at_visit <- as.numeric(master_IRTA_screens_reordered$Age_at_visit)
master_IRTA_screens_reordered <- left_join(master_IRTA_screens_reordered, age_dummy_screens, all=TRUE)
master_IRTA_screens_reordered$Age_at_visit <- coalesce(master_IRTA_screens_reordered$Age_at_visit, master_IRTA_screens_reordered$Age_at_visit2)
master_IRTA_screens_reordered <- master_IRTA_screens_reordered %>% select(-Age_at_visit2)
# calculating age at visit - old referrals tracker
age_dummy_old_screens <- master_IRTA_old_screens_reordered %>% filter(!is.na(DOB)) %>% filter(!is.na(Overall_date)) %>%
select(FIRST_NAME, LAST_NAME, Initials, SDAN, DOB, Overall_date) %>% distinct(., .keep_all = TRUE)
age_dummy_old_screens$Age_at_visit2 <- age_calc(dob = age_dummy_old_screens$DOB, enddate = age_dummy_old_screens$Overall_date, units = "years", precise = TRUE) %>% round(., digits = 2)
# merging age variable back into master dataset
master_IRTA_old_screens_reordered$Age_at_visit <- as.numeric(master_IRTA_old_screens_reordered$Age_at_visit)
master_IRTA_old_screens_reordered <- left_join(master_IRTA_old_screens_reordered, age_dummy_old_screens, all=TRUE)
master_IRTA_old_screens_reordered$Age_at_visit <- coalesce(master_IRTA_old_screens_reordered$Age_at_visit, master_IRTA_old_screens_reordered$Age_at_visit2)
master_IRTA_old_screens_reordered <- master_IRTA_old_screens_reordered %>% select(-Age_at_visit2)
# creating participant type 2 variable
# active participants
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'HV')] <- 'HV'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'MDD')] <- 'MDD'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'DMDD')] <- 'DMDD'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'ANX')] <- 'Anxious'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'xious')] <- 'Anxious'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'ADHD')] <- 'ADHD'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'UNSURE')] <- 'UNSURE'
master_IRTA_reordered$Participant_Type2[str_detect(master_IRTA_reordered$Participant_Type, 'Unsure')] <- 'UNSURE'
master_IRTA_reordered$SDAN[master_IRTA_reordered$SDAN=='999'] <- NA
# current referrals
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'HV')] <- 'HV'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'MDD')] <- 'MDD'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'DMDD')] <- 'DMDD'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'ANX')] <- 'Anxious'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'xious')] <- 'Anxious'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'ADHD')] <- 'ADHD'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'UNSURE')] <- 'UNSURE'
master_IRTA_screens_reordered$Participant_Type2[str_detect(master_IRTA_screens_reordered$Participant_Type, 'Unsure')] <- 'UNSURE'
master_IRTA_screens_reordered$SDAN[master_IRTA_screens_reordered$SDAN=='999'] <- NA
# old referrals
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'HV')] <- 'HV'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'MDD')] <- 'MDD'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'DMDD')] <- 'DMDD'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'ANX')] <- 'Anxious'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'xious')] <- 'Anxious'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'ADHD')] <- 'ADHD'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'UNSURE')] <- 'UNSURE'
master_IRTA_old_screens_reordered$Participant_Type2[str_detect(master_IRTA_old_screens_reordered$Participant_Type, 'Unsure')] <- 'UNSURE'
master_IRTA_old_screens_reordered$SDAN[master_IRTA_old_screens_reordered$SDAN=='999'] <- NA
# splitting clinicial visit type into code & numeric columns
split1 <- colsplit(master_IRTA_reordered$Clinical_Visit_Type, "", names = c("Clinical_Visit_Code2", "Clinical_Visit_Number2"))
master_IRTA_reordered <- cbind(master_IRTA_reordered, split1)
master_IRTA_reordered$Clinical_Visit_Code <- coalesce(master_IRTA_reordered$Clinical_Visit_Code, master_IRTA_reordered$Clinical_Visit_Code2)
master_IRTA_reordered$Clinical_Visit_Number <- coalesce(master_IRTA_reordered$Clinical_Visit_Number, master_IRTA_reordered$Clinical_Visit_Number2)
master_IRTA_reordered <- master_IRTA_reordered %>% select(-Clinical_Visit_Code2, -Clinical_Visit_Number2)
# another reorder & sort
irta_tracker_columns <- read_excel(paste0(IRTA_tracker_location, "other_data_never_delete/irta_tracker_columns.xlsx"))
master_IRTA_latest <- master_IRTA_reordered %>% select(irta_tracker_columns$include) %>% arrange(Initials, Clinical_Visit_Date)
master_IRTA_screens_latest <- master_IRTA_screens_reordered %>% select(irta_tracker_columns$include) %>% arrange(Initials, Referral_Date)
master_IRTA_oldest_screens_latest <- master_IRTA_old_screens_reordered %>% select(irta_tracker_columns$include) %>% arrange(Referral_Date)
####################Chris's here.....
suppressWarnings(source(paste0(scripts,"Other_functions/Schedule_script_functions.R")))
master_IRTA_latest$Next_FU_date <- as.Date(NA,origin = "1899-12-30")
master_IRTA_latest$Next_FU_notes <- NA
for (row in c(1:nrow(master_IRTA_latest))) {
if (!is.na(master_IRTA_latest[row,"IRTA_tracker"]) & master_IRTA_latest[row, "IRTA_tracker"] != "REMOVED") {
print_dates(row,master_IRTA_latest)
print_notes(row,master_IRTA_latest)
assign('master_IRTA_latest',master_IRTA_latest,envir=.GlobalEnv)
}
#print("completed")
}
master_IRTA_latest$Clinical_Visit_Date <- as.Date(master_IRTA_latest$Clinical_Visit_Date, origin = "1899-12-30")
master_IRTA_latest$Task1_Date <- as.Date(master_IRTA_latest$Task1_Date, origin = "1899-12-30")
master_IRTA_latest$Next_FU_date <- as.Date(master_IRTA_latest$Next_FU_date, origin = "1899-12-30")
######################################################################################
#######Creating tasks database
task_reshape_master = data.frame(matrix(ncol = 15, nrow = 0))
x <- c("FIRST_NAME", "LAST_NAME", "Initials", "SDAN", "IRTA_tracker", "Participant_Type2",
"Eligible", "Scheduling_status", "Overall_date", "Protocol", "Scanner",
"Task_Name", "Task_Number", "Task_Date", "Task_Visit_Type")
colnames(task_reshape_master) <- x
for(i in seq_len(max_tasks)) {
iter <- as.numeric(i)
# iter=2 # for manually running without the loop
task_reshape <- master_IRTA_latest %>%
select(FIRST_NAME, LAST_NAME, Initials, SDAN, IRTA_tracker, Participant_Type2,
Eligible, Scheduling_status, Overall_date, Protocol, Scanner,
paste0("Task", iter, "_Name"), paste0("Task", iter, "_Number"),
paste0("Task", iter, "_Date"), paste0("Task", iter, "_Visit_Type"))
if(iter==1) {
dummy <- task_reshape %>% filter(is.na(Task1_Name)) %>%
filter(is.na(Task1_Date) & is.na(Task1_Number) & is.na(Task1_Visit_Type)) %>% filter(!is.na(Overall_date))
dummy$Task1_Name <- replace_na(dummy$Task1_Name, "No_Task")
dummy$Task1_Date <- dummy$Overall_date
dummy2 <- task_reshape %>% filter(!is.na(Task1_Name) | !is.na(Task1_Date) | !is.na(Task1_Number) | !is.na(Task1_Visit_Type))
task_reshape <- merge.default(dummy2, dummy, all=TRUE)
rm(dummy, dummy2)
}
names(task_reshape)[names(task_reshape) == paste0("Task", iter, "_Name")] <- "Task_Name"
names(task_reshape)[names(task_reshape) == paste0("Task", iter, "_Number")] <- "Task_Number"
names(task_reshape)[names(task_reshape) == paste0("Task", iter, "_Date")] <- "Task_Date"
names(task_reshape)[names(task_reshape) == paste0("Task", iter, "_Visit_Type")] <- "Task_Visit_Type"
task_reshape <- task_reshape %>%
filter(!is.na(Task_Name) | !is.na(Task_Date) & !is.na(Task_Number) & !is.na(Task_Visit_Type)) %>%
distinct(., .keep_all = TRUE)
# assign(paste0("task", iter), task_reshape) # uncomment this row if you would like to KEEP all individual files from loop to QC them
task_reshape_master <- merge.default(task_reshape_master, task_reshape, all=TRUE)
}
##### Adding other info to tasks dataset
eligibility_variables <- master_IRTA_latest %>%
select(Initials, SDAN, DAWBA_ID, PLUSID, IRTA_tracker, Overall_date, Eligible,
SEX, DOB, Handedness, Participant_Type, Participant_Type2, Age_at_visit, Clinical_Visit_Date,
Clinical_Visit_Type, Clinical_Visit_Code, Clinical_Visit_Number, Scheduling_status) %>%
arrange(Initials, Overall_date, desc(Clinical_Visit_Type)) %>%
distinct(., Initials, SDAN, Overall_date, .keep_all = TRUE)
task_reshape_master <- left_join(task_reshape_master, eligibility_variables, all=TRUE)
task_reshape_master <- task_reshape_master %>%
select(FIRST_NAME, LAST_NAME, Initials, SDAN, DAWBA_ID, PLUSID, IRTA_tracker,
SEX, DOB, Handedness, Participant_Type, Participant_Type2, Age_at_visit, Overall_date,
Eligible, Clinical_Visit_Date, Clinical_Visit_Type, Clinical_Visit_Code, Clinical_Visit_Number,
Scheduling_status, Protocol, Scanner,
Task_Name, Task_Number, Task_Date, Task_Visit_Type) %>%
arrange(Initials, Overall_date) %>%
filter(!is.na(Task_Name)) %>% filter(!is.na(Task_Date)) %>%
distinct(., .keep_all = TRUE)
task_reshape_master$Clinical_Visit_Code <- na_if(task_reshape_master$Clinical_Visit_Code, "")
task_reshape_master$Clinical_Visit_Number <- na_if(task_reshape_master$Clinical_Visit_Number, "")
##### Overall task QC
# task name check
task_names <- read_excel(paste0(IRTA_tracker_location, "/other_data_never_delete/tasks_list.xlsx"))
task_name_check <- task_reshape_master %>% filter(!is.na(Task_Name)) %>% select(Initials, SDAN, IRTA_tracker, Task_Name, Task_Date, Task_Number, Task_Visit_Type)
task_name_check$correct <- (task_name_check$Task_Name %in% task_names$Task_Name) %>% as.character()
task_name_check <- task_name_check %>% filter(correct=="FALSE") %>% mutate(reason1 = "Task name incorrect") %>% select(-correct)
# uniqeness:
task_duplicate_date <- task_reshape_master %>% filter(Task_Name!="No_Task") %>%
group_by(Initials, Task_Name, Task_Date) %>% filter(n()>1) %>% ungroup() %>% mutate(reason2="Duplicate task date")
task_duplicate_v_type <- task_reshape_master %>% filter(Task_Name!="No_Task") %>% filter(!is.na(Task_Visit_Type)) %>%
group_by(Initials, Task_Name, Task_Visit_Type) %>% filter(n()>1) %>% ungroup() %>% mutate(reason3="Duplicate task visit type")
task_duplicate_number <- task_reshape_master %>% filter(Task_Name!="No_Task") %>% filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(Initials, Task_Name, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason4="Duplicate task number")
# task information missing
task_number_check <- task_reshape_master %>% filter(!is.na(Task_Name) & !is.na(Task_Date)) %>% filter(Task_Name!="No_Task" & Task_Name!="Measures") %>%
filter(is.na(Task_Number)) %>% mutate(reason5 = "Missing task number")
task_scanner_missing <- task_reshape_master %>% filter(str_detect(Task_Name, "_scan")) %>% filter(Task_Number!="777" & Task_Number!="999") %>%
filter(is.na(Scanner)) %>% mutate(reason6="Task scanner missing")
# missing other crucial information
task_missing_handedness <- task_reshape_master %>% filter(str_detect(Task_Name, "_scan")) %>% filter(Task_Number!="777" & Task_Number!="999") %>%
filter(Participant_Type2=="MDD" | Participant_Type2=="HV" | is.na(Participant_Type2)) %>%
group_by(Initials) %>% slice(1) %>% ungroup() %>% filter(is.na(Handedness)) %>% mutate(reason7 = "Missing handedness")
task_missing_dx <- task_reshape_master %>% filter(!is.na(Task_Name) & Task_Name!="No_Task") %>%
filter(Task_Number!="777" & Task_Number!="999") %>% filter(is.na(Participant_Type2)) %>% mutate(reason8 = "Missing diagnosis")
duplicate_initials <- task_reshape_master %>% filter(!is.na(SDAN)) %>% select(Initials, SDAN) %>% distinct(., .keep_all = TRUE) %>%
group_by(SDAN) %>% filter(n()>1) %>% ungroup() %>% mutate(reason9="Duplicate Initials")
duplicate_sdan <- task_reshape_master %>% filter(!is.na(Initials)) %>% select(Initials, SDAN) %>% distinct(., .keep_all = TRUE) %>%
group_by(Initials) %>% filter(n()>1) %>% ungroup() %>% mutate(reason10="Duplicate SDAN")
task_missing_sex <- task_reshape_master %>% group_by(Initials) %>% slice(1) %>% ungroup() %>% filter(is.na(SEX)) %>% mutate(reason11="Missing gender")
task_missing_dob <- task_reshape_master %>% group_by(Initials) %>% slice(1) %>% ungroup() %>% filter(is.na(DOB)) %>% mutate(reason12="Missing DOB")
task_missing_initials <- task_reshape_master %>% filter(is.na(Initials)) %>% mutate(reason13="Missing Initials")
task_missing_eligible <- task_reshape_master %>% filter(!is.na(Task_Name) & Task_Name!="No_Task") %>% filter(is.na(Eligible)) %>%
filter(Task_Date<todays_date_formatted) %>% mutate(reason14="Missing eligibility information")
task_missing_clinical_date <- task_reshape_master %>% filter(!is.na(Task_Name) & Task_Name!="No_Task") %>% filter(Task_Number!="777" & Task_Number!="999") %>%
filter(!is.na(Task_Date)) %>% filter(is.na(Clinical_Visit_Date)) %>% mutate(reason15="Missing clinical visit date")
task_check_clinical_code <- task_reshape_master %>% filter(!is.na(Task_Name) & Task_Name!="No_Task") %>% filter(Task_Number!="777" & Task_Number!="999") %>%
filter(!is.na(Task_Date)) %>% filter(is.na(Clinical_Visit_Code) | is.na(Clinical_Visit_Number)) %>% mutate(reason16="Check clinical visit code")
task_missing_scheduling <- task_reshape_master %>% filter(is.na(Scheduling_status)) %>%
filter(!is.na(Task_Date)) %>% filter(is.na(Clinical_Visit_Date)) %>% mutate(reason17="Missing scheduling status")
task_missing_dawbaid <- task_reshape_master %>% select(FIRST_NAME:Clinical_Visit_Type, Protocol) %>%
group_by(Initials) %>% slice(1) %>% ungroup() %>% filter(Participant_Type2=="MDD" | Participant_Type2=="HV") %>%
filter(!str_detect(Participant_Type, "Fox")) %>% distinct(., .keep_all = TRUE) %>% filter(is.na(DAWBA_ID)) %>%
filter(str_detect(Protocol, "0037")) %>% filter(Overall_date > as.Date("2018-05-01")) %>% mutate(reason18="Missing DAWBA ID")
task_missing_protocol <- task_reshape_master %>% select(FIRST_NAME:Clinical_Visit_Type, Protocol) %>%
group_by(Initials) %>% arrange(Overall_date) %>% slice(1) %>% ungroup() %>% filter(is.na(Protocol)) %>%
filter(Participant_Type2=="MDD" | Participant_Type2=="HV") %>% filter(!str_detect(Participant_Type, "Fox")) %>%
filter(Clinical_Visit_Date < todays_date_formatted) %>% mutate(reason19="Missing protocol number")
# comparing to previous version
task_master_file <- list.files(path = paste0(IRTA_tracker_location, "IRTA_Master_Backups/"), pattern = "^TASKS_DATABASE_QC", all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
task_master_file_time <- file.mtime(paste0(IRTA_tracker_location, "IRTA_Master_Backups/", task_master_file)) %>% as.Date()
task_master_combined <- tibble(File=c(task_master_file), Date=c(task_master_file_time))
task_master_combined$date_diff <- as.numeric(difftime(last_week_date_formatted, task_master_combined$Date, tz="", units = "days"))
task_master_combined$day_of_week <- weekdays(as.Date(task_master_combined$Date))
task_master_combined <- task_master_combined %>% filter(day_of_week=="Wednesday") %>% arrange(date_diff) %>% filter(date_diff>=0) %>% slice(1)
prev_task_database <- read_excel(paste0(IRTA_tracker_location, "IRTA_Master_Backups/", task_master_combined[1])) %>%
select(Initials:Participant_Type, Eligible:Task_Visit_Type) %>% mutate(source2="old version of tracker")
date_variabes <- c("DOB", "Task_Date")
numeric_variables <- c("Task_Number")
prev_task_database[date_variabes] <- lapply(prev_task_database[date_variabes], as.Date)
prev_task_database[numeric_variables] <- lapply(prev_task_database[numeric_variables], as.numeric)
historical_check <- task_reshape_master %>% select(Initials:Participant_Type, Eligible:Task_Visit_Type) %>%
mutate(source1="new version of tracker") %>% merge.default(., prev_task_database, all=TRUE) %>% filter(is.na(source1) | is.na(source2))
historical_check$Info_source <- coalesce(historical_check$source1, historical_check$source2)
historical_check <- historical_check %>% select(-source1, -source2) %>% group_by(Initials) %>% filter(n()>1) %>% ungroup() %>%
mutate(reason20="Information change from previous tracker merge: check deliberate vs. accidental. Origin of information")
# checking the existence of behavioural files
# Supreme
supreme_irta_list <- task_reshape_master %>% filter(Task_Name=="Supreme") %>% filter(Task_Number!="999" & Task_Number!="777") %>% select(SDAN, IRTA_tracker, Task_Date, Task_Number)
supreme_file1 <- list.files(path = paste0(supreme_file_location), pattern = "", all.files = FALSE, full.names = FALSE, recursive = TRUE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE) %>% as.data.frame()
supreme_file2 <- colsplit(supreme_file1$., "/", names = c("SDAN", "Task_Folder", "Folder_contents")) %>% filter(Task_Folder != "ass_bind_pickles" & Task_Folder != "note_on_combined_dirs")
supreme_file2a <- colsplit(supreme_file2$Task_Folder, "_", names = c("Task_Date_unformatted", "Task_Time_unformatted"))
supreme_file2 <- cbind(supreme_file2, supreme_file2a)
supreme_file2$Task_Date <- paste(substring(supreme_file2$Task_Date_unformatted, 1, 4), substring(supreme_file2$Task_Date_unformatted, 5, 6), substring(supreme_file2$Task_Date_unformatted, 7, 8), sep = "-")
supreme_file2$Task_Date <- as.Date(supreme_file2$Task_Date)
supreme_file2$Task_Time <- paste(substring(supreme_file2$Task_Time_unformatted, 1, 2), substring(supreme_file2$Task_Time_unformatted, 3, 4), substring(supreme_file2$Task_Time_unformatted, 5, 6), sep = ":")
supreme_file2 <- supreme_file2 %>% group_by(SDAN, Task_Date, Task_Time) %>% mutate(Num_files = row_number()) %>% arrange(SDAN, Task_Date, Task_Time, Num_files) %>% slice(n()) %>% ungroup() %>%
select(SDAN, Task_Date, Num_files) %>% distinct(., .keep_all = TRUE) %>% group_by(SDAN) %>% arrange(SDAN, Task_Date) %>% mutate(Task_Number = row_number()) %>% ungroup()
supreme_file_qc <- merge.default(supreme_irta_list, supreme_file2, all=TRUE)
supreme_file_missing <- supreme_file_qc %>% filter(is.na(Num_files)) %>% mutate(reason21="Behavioural files not added to directory")
supreme_tracker_missing <- supreme_file_qc %>% filter(is.na(IRTA_tracker)) %>% mutate(reason22="IRTA tracker: task missing/error - check dates, task number, etc.")
supreme_incomplete <- supreme_file_qc %>% filter(Num_files!=42) %>% mutate(reason23="Incorrect numbers of behavioural files: should be 42")
# MMI recovery (PsychoPy online task)
MMI_recovery_files <- list.files(path = paste0(MMI_recovery_file_location), pattern = "\\.csv$", all.files = FALSE, full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
MMI_recovery_file_times <- file.mtime(paste0(MMI_recovery_file_location, "/", MMI_recovery_files)) %>% as.Date()
MMI_recovery_combined <- tibble(File=c(MMI_recovery_files), File_last_modified=c(MMI_recovery_file_times)) %>% filter(!str_detect(File, "00000_2_"))
MMI_recovery_split <- colsplit(MMI_recovery_combined$File, "_", names = c("SDAN", "MMI_task", "Task_Completed_Date", "Task_Time"))
MMI_recovery_split$Task_Time <- gsub(".csv", "", MMI_recovery_split$Task_Time)
MMI_recovery_combined <- cbind(MMI_recovery_combined, MMI_recovery_split) %>% select(SDAN, Task_Completed_Date, Task_Time, File, File_last_modified)
MMI_recovery_combined$Task_Completed_Date <- as.Date(MMI_recovery_combined$Task_Completed_Date)
MMI_recovery_combined <- master_IRTA_latest %>% select(Initials, SDAN, IRTA_tracker) %>% distinct(., .keep_all = TRUE) %>% merge.default(., MMI_recovery_combined, all = TRUE) %>%
filter(!is.na(File))
irta_tracker_check <- task_reshape_master %>% filter(Task_Name=="MMI_recovery") %>% select(Initials, SDAN, IRTA_tracker, Task_Name, Task_Date, Task_Number)
MMI_recovery_combined2 <- merge.default(irta_tracker_check, MMI_recovery_combined, all = TRUE) %>% select(-File_last_modified)
MMI_recovery_combined2$measurement_TDiff <- as.numeric(difftime(MMI_recovery_combined2$Task_Completed_Date, MMI_recovery_combined2$Task_Date, tz="", units = "days"))
MMI_recovery_combined2 <- MMI_recovery_combined2 %>% mutate(measurement_TDiff_abs=abs(measurement_TDiff)) %>% group_by(Initials, Task_Name, Task_Date) %>%
arrange(Initials, Task_Name, Task_Date, measurement_TDiff_abs) %>% slice(1) %>% ungroup() %>% group_by(Initials, Task_Name, Task_Completed_Date) %>%
arrange(Initials, Task_Name, Task_Completed_Date, measurement_TDiff_abs) %>% slice(1) %>% ungroup() %>% select(-measurement_TDiff_abs, -measurement_TDiff)
mmi_recovery_not_tracked <- MMI_recovery_combined2 %>% filter(is.na(Task_Name)) %>% mutate(reason24="MMI_recovery completed but missing from IRTA tracker")
# combining the above
task_errors_combined <- merge.default(task_name_check, task_duplicate_date, all=TRUE) %>% merge.default(., task_duplicate_v_type, all=TRUE) %>%
merge.default(., task_duplicate_number, all=TRUE) %>% merge.default(., task_number_check, all=TRUE) %>% merge.default(., task_scanner_missing, all=TRUE) %>%
merge.default(., task_missing_handedness, all=TRUE) %>% merge.default(., task_missing_dx, all=TRUE) %>% merge.default(., duplicate_initials, all=TRUE) %>%
merge.default(., duplicate_sdan, all=TRUE) %>% merge.default(., task_missing_sex, all=TRUE) %>% merge.default(., task_missing_dob, all=TRUE) %>%
merge.default(., task_missing_initials, all=TRUE) %>% merge.default(., task_missing_eligible, all=TRUE) %>% merge.default(., task_missing_clinical_date, all=TRUE) %>%
merge.default(., task_check_clinical_code, all=TRUE) %>% merge.default(., task_missing_scheduling, all=TRUE) %>% merge.default(., task_missing_dawbaid, all=TRUE) %>%
merge.default(., task_missing_protocol, all=TRUE) %>% merge.default(., historical_check, all=TRUE) %>% merge.default(., supreme_file_missing, all=TRUE) %>%
merge.default(., supreme_tracker_missing, all=TRUE) %>% merge.default(., supreme_incomplete, all=TRUE) %>%
merge.default(., mmi_recovery_not_tracked, all=TRUE) %>% select(-FIRST_NAME, -LAST_NAME)
task_errors_combined$QC_task <- paste(task_errors_combined$reason1, task_errors_combined$reason2, task_errors_combined$reason3, task_errors_combined$reason4,
task_errors_combined$reason5, task_errors_combined$reason6, task_errors_combined$reason21, task_errors_combined$reason22,
task_errors_combined$reason23, task_errors_combined$reason24, sep = "; ")
task_errors_combined$QC_other <- paste(task_errors_combined$reason7, task_errors_combined$reason8, task_errors_combined$reason9, task_errors_combined$reason10,
task_errors_combined$reason11, task_errors_combined$reason12, task_errors_combined$reason13, task_errors_combined$reason14,
task_errors_combined$reason15, task_errors_combined$reason16, task_errors_combined$reason17, task_errors_combined$reason18,
task_errors_combined$reason19, sep = "; ")
task_errors_combined$QC_historical <- paste(task_errors_combined$reason20, task_errors_combined$Info_source, sep = "; ")
task_errors_combined$QC_task <- gsub("NA; ", "", task_errors_combined$QC_task, fixed=TRUE)
task_errors_combined$QC_task <- gsub("; NA", "", task_errors_combined$QC_task, fixed=TRUE)
task_errors_combined$QC_task <- na_if(task_errors_combined$QC_task, "NA")
task_errors_combined$QC_other <- gsub("NA; ", "", task_errors_combined$QC_other, fixed=TRUE)
task_errors_combined$QC_other <- gsub("; NA", "", task_errors_combined$QC_other, fixed=TRUE)
task_errors_combined$QC_other <- na_if(task_errors_combined$QC_other, "NA")
task_errors_combined$QC_historical <- gsub("NA; ", "", task_errors_combined$QC_historical, fixed=TRUE)
task_errors_combined$QC_historical <- gsub("; NA", "", task_errors_combined$QC_historical, fixed=TRUE)
task_errors_combined$QC_historical <- na_if(task_errors_combined$QC_historical, "NA")
task_errors_combined <- task_errors_combined %>% select(-matches("reason"), -Info_source, -Participant_Type2, -Age_at_visit, -Overall_date) %>% arrange(Initials, Task_Date)
# check <- eligibility_variables %>% filter(is.na(Clinical_Visit_Type)) %>% filter(Scheduling_status=='3')
# check <- table(task_reshape_master$Task_Name, task_reshape_master$IRTA_tracker) %>% as.data.frame() %>% filter(Freq!='0')
######################################################################################
#######Adding MRI QC information
##### MMI
MMI_task_QC = data.frame(matrix(ncol = 5, nrow = 0))
x <- c("SDAN", "Task_Name", "Task_Date", "QC_tracker_tab_no", "Include")
colnames(MMI_task_QC) <- x
for(i in seq_len(max_MMI)) {
# iter=1
iter <- as.numeric(i)
float <- read_excel(paste0(MMI_tracker_location, "MMI Participant Tracker_new - USE ME.xlsx"), sheet = "MMI_fMRI", col_names = TRUE, skip = 1, col_types = NULL) %>%
mutate(QC_tracker_tab_no = iter) %>% mutate(Task_Name = "MMI_3blocks_scan") %>%
rename(Task_Date = Date) %>%
select(SDAN, Task_Name, Task_Date, QC_tracker_tab_no, Include) %>%
filter(!is.na(SDAN))
MMI_task_QC <- merge.default(MMI_task_QC, float, all=TRUE)
}
MMI_task_QC <- MMI_task_QC %>% arrange(SDAN, QC_tracker_tab_no)
MMI_task_QC$Task_Date <- as.Date(MMI_task_QC$Task_Date)
MMI_task_QC$SDAN <- as.character(MMI_task_QC$SDAN)
##### checking for merge conflicts/missing MMIs:
MMI_missing <- task_reshape_master %>%
filter(Task_Name=="MMI_3blocks_scan") %>%
select(Initials, SDAN, IRTA_tracker, Eligible, Scheduling_status,
Participant_Type2, Protocol, Clinical_Visit_Type, Scanner,
Task_Name, Task_Number, Task_Date) %>%
merge.default(., MMI_task_QC, all=TRUE)
MMI_missing$Days_since_scan <- as.numeric(difftime(MMI_missing$Task_Date, todays_date_formatted, tz="", units = "days"))
of_interest <- c('IRTA_tracker', 'Eligible', 'Scheduling_status', 'Protocol', 'Scanner', 'Task_Number', 'QC_tracker_tab_no', 'Include', 'Days_since_scan')
MMI_missing[of_interest] <- lapply(MMI_missing[of_interest], replace_na, '666')
numeric <- c('Eligible', 'Scheduling_status', 'Task_Number', 'QC_tracker_tab_no', 'Include', 'Days_since_scan')
MMI_missing[numeric] <- lapply(MMI_missing[numeric], as.numeric)
MMI_missing_date <- MMI_missing %>% filter(is.na(Task_Date)) %>% filter(Task_Number != '666') %>% mutate(reason1="Missing task date")
MMI_missing_number <- MMI_missing %>% filter(Days_since_scan<0) %>%
filter(Task_Number == '666') %>% mutate(reason2="Missing task number")
MMI_missing_qc <- MMI_missing %>% filter(Days_since_scan<0) %>%
filter(Include=='666') %>% mutate(reason3="Missing from MMI tracker (check really missing vs. info mismatch)")
MMI_missing_irta <- MMI_missing %>% filter(Days_since_scan<0) %>%
filter(IRTA_tracker=='666') %>% mutate(reason4="Missing from IRTA tracker")
MMI_duplicate_date <- MMI_missing %>% group_by(SDAN, Task_Date) %>% filter(n()>1) %>% ungroup() %>% mutate(reason5="Duplicate date")
MMI_duplicate_number <- MMI_missing %>% group_by(SDAN, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason6="Duplicate number")
MMI_missing_combined <- merge.default(MMI_missing_date, MMI_missing_number, all=TRUE) %>% merge.default(., MMI_missing_qc, all=TRUE) %>%
merge.default(., MMI_missing_irta, all=TRUE) %>% merge.default(., MMI_duplicate_date, all=TRUE) %>% merge.default(., MMI_duplicate_number, all=TRUE)
MMI_missing_combined$QC_missing <- paste(MMI_missing_combined$reason1, MMI_missing_combined$reason2, MMI_missing_combined$reason3,
MMI_missing_combined$reason4, MMI_missing_combined$reason5, MMI_missing_combined$reason6, sep = "; ")
MMI_missing_combined$QC_missing <- gsub("NA; ", "", MMI_missing_combined$QC_missing, fixed=TRUE)
MMI_missing_combined$QC_missing <- gsub("; NA", "", MMI_missing_combined$QC_missing, fixed=TRUE)
MMI_missing_combined <- MMI_missing_combined %>% select(-matches("reason")) %>% arrange(Initials, Task_Date)
MMI_missing_combined[of_interest] <- lapply(MMI_missing_combined[of_interest], na_if, '666')
##### MID
MID_task_QC = data.frame(matrix(ncol = 5, nrow = 0))
x <- c("SDAN", "Task_Name", "Task_Date", "QC_tracker_tab_no", "Include")
colnames(MID_task_QC) <- x
for(i in seq_len(max_MID)) {
# iter=1
iter <- as.numeric(i)
float <- read_excel(paste0(MID_tracker_location, "MID Tasks.xlsx"), sheet = paste0("QC_", iter), col_names = TRUE, skip = 1, col_types = NULL) %>%
mutate(QC_tracker_tab_no = iter) %>% mutate(Task_Name = "MID_scan") %>%
rename(Task_Date = Date) %>%
select(SDAN, Task_Name, Task_Date, QC_tracker_tab_no, Include) %>%
filter(!is.na(SDAN))
MID_task_QC <- merge.default(MID_task_QC, float, all=TRUE)
}
MID_task_QC <- MID_task_QC %>% arrange(SDAN, QC_tracker_tab_no)
MID_task_QC$Task_Date <- as.Date(MID_task_QC$Task_Date)
MID_task_QC$SDAN <- as.character(MID_task_QC$SDAN)
##### checking for merge conflicts/missing information:
MID_check <- task_reshape_master %>% filter(Task_Name=="MID_scan") %>%
select(Initials, SDAN, IRTA_tracker, Eligible, Scheduling_status, Participant_Type2, Protocol, Clinical_Visit_Type,
Scanner, Task_Name, Task_Number, Task_Date, Task_Visit_Type)
RS_check <- task_reshape_master %>% filter(Task_Name=="Resting_state_scan") %>%
select(Initials, SDAN, IRTA_tracker, Eligible, Scheduling_status, Participant_Type2, Protocol, Clinical_Visit_Type,
Scanner, Task_Name, Task_Number, Task_Date, Task_Visit_Type) %>% rename(Resting = "Task_Name")
MID_missing <- MID_check %>% merge.default(., MID_task_QC, all=TRUE) %>%
merge.default(., RS_check, all=TRUE)
MID_missing$Days_since_scan <- as.numeric(difftime(MID_missing$Task_Date, todays_date_formatted, tz="", units = "days"))
of_interest <- c('IRTA_tracker', 'Eligible', 'Scheduling_status', 'Protocol', 'Scanner', 'Task_Number', 'QC_tracker_tab_no', 'Include', 'Days_since_scan')
MID_missing[of_interest] <- lapply(MID_missing[of_interest], replace_na, '666')
numeric <- c('Eligible', 'Scheduling_status', 'Task_Number', 'QC_tracker_tab_no', 'Include', 'Days_since_scan')
MID_missing[numeric] <- lapply(MID_missing[numeric], as.numeric)
MID_missing_date <- MID_missing %>% filter(is.na(Task_Date)) %>% filter(Task_Number != '666') %>% mutate(reason1="Missing task date")
MID_missing_number <- MID_missing %>% filter(Days_since_scan<0) %>% filter(Task_Number == '666') %>% mutate(reason2="Missing task number")
MID_missing_qc <- MID_missing %>% filter(Days_since_scan<0) %>% filter(Task_Number!="777" & Task_Number!="999") %>%
filter(Include=='666' & !is.na(Task_Name)) %>% mutate(reason3="Missing from MID tracker (check really missing vs. info mismatch)")
MID_missing_irta <- MID_missing %>% filter(Days_since_scan<0) %>%
filter(IRTA_tracker=='666') %>% mutate(reason4="Missing from IRTA tracker")
MID_duplicate_date <- MID_missing %>% filter(!is.na(Task_Name)) %>% group_by(SDAN, Task_Date) %>% filter(n()>1) %>% ungroup() %>% mutate(reason5="Duplicate MID date")
MID_duplicate_number <- MID_missing %>% filter(!is.na(Task_Name)) %>% filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(SDAN, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason6="Duplicate MID number")
MID_duplicate_v_type <- MID_missing %>% filter(!is.na(Task_Name)) %>% filter(!is.na(Task_Visit_Type)) %>%
group_by(SDAN, Task_Visit_Type) %>% filter(n()>1) %>% ungroup() %>% mutate(reason7="Duplicate MID task visit type")
RS_duplicate_date <- MID_missing %>% filter(!is.na(Resting)) %>% group_by(SDAN, Task_Date) %>% filter(n()>1) %>% ungroup() %>% mutate(reason8="Duplicate RS date")
RS_duplicate_number <- MID_missing %>% filter(!is.na(Resting)) %>% filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(SDAN, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason9="Duplicate RS number")
RS_duplicate_v_type <- MID_missing %>% filter(!is.na(Resting)) %>% filter(!is.na(Task_Visit_Type)) %>%
group_by(SDAN, Task_Visit_Type) %>% filter(n()>1) %>% ungroup() %>% mutate(reason10="Duplicate RS task visit type")
MID_resting_discrepancy<- MID_missing %>% filter(is.na(Resting) | is.na(Task_Name)) %>% group_by(Initials) %>% filter(n()>1) %>% # mutate(count = row_number()) %>%
ungroup() %>% mutate(reason11="MID & RS info doesn't match; check task date, visit type & number are the same for both")
MID_missing_resting <- MID_missing %>% filter(is.na(Resting) | is.na(Task_Name)) %>% group_by(Initials) %>% filter(n()<2) %>%
ungroup() %>% mutate(reason12="MID &/or RS missing")
MID_missing_combined <- merge.default(MID_missing_date, MID_missing_number, all=TRUE) %>% merge.default(., MID_missing_qc, all=TRUE) %>%
merge.default(., MID_missing_irta, all=TRUE) %>% merge.default(., MID_duplicate_date, all=TRUE) %>% merge.default(., MID_duplicate_number, all=TRUE) %>%
merge.default(., MID_duplicate_v_type, all=TRUE) %>% merge.default(., RS_duplicate_date, all=TRUE) %>% merge.default(., RS_duplicate_number, all=TRUE) %>%
merge.default(., RS_duplicate_v_type, all=TRUE) %>% merge.default(., MID_resting_discrepancy, all=TRUE) %>% merge.default(., MID_missing_resting, all=TRUE)
MID_missing_combined$QC_missing <- paste(MID_missing_combined$reason1, MID_missing_combined$reason2, MID_missing_combined$reason3,
MID_missing_combined$reason4, MID_missing_combined$reason5, MID_missing_combined$reason6,
MID_missing_combined$reason7, MID_missing_combined$reason8, MID_missing_combined$reason9,
MID_missing_combined$reason10, MID_missing_combined$reason11, MID_missing_combined$reason12, sep = "; ")
MID_missing_combined$QC_missing <- gsub("NA; ", "", MID_missing_combined$QC_missing, fixed=TRUE)
MID_missing_combined$QC_missing <- gsub("; NA", "", MID_missing_combined$QC_missing, fixed=TRUE)
MID_missing_combined <- MID_missing_combined %>% select(-matches("reason")) %>% arrange(Initials, Task_Date)
MID_missing_combined[of_interest] <- lapply(MID_missing_combined[of_interest], na_if, '666')
######################################################################################
#######Adding MEG QC information
##### list of MEG from QC tracker
MEG_tasks <- c("MEG_MMI", "Booster", "MEG_RL")
for(i in seq_along(MEG_tasks)) {
iter <- as.numeric(i)
# iter=1
temp_MEG_data <- read_excel(paste0(MEG_tracker_location, "MEG_Tracker.xlsx"), sheet = MEG_tasks[iter]) %>%
mutate_all(as.character) %>% mutate(MEG_tab=MEG_tasks[iter])
assign(paste0("task_", iter, "_meg_data"), temp_MEG_data)
}
# merge & tidy up
rm(temp_MEG_data)
meg_sets <- ls(pattern="_meg_data")
meg_sets <- mget(meg_sets)
meg_combined <- reduce(meg_sets, full_join) %>% rename(Participant_Type = "Group") %>% rename(Task_Date = "Date") %>%
rename(Task_Time = "taskTime") %>% rename(IRTA_tracker = "IRTA Contact") %>% rename(MEG_Scan_Notes = "Scan_Notes") %>%
select(-Age, -MRN, -Sex, -Earnings, -Task_Time, -Recent_MPRAGE, -IRTA_tracker, -Participant_Type, -`T1 moved to MEG directory`, -`T1 Image Notes`)
meg_combined$Days_since_scan <- as.numeric(difftime(meg_combined$Task_Date, todays_date_formatted, tz="", units = "days")) %>% round(., digits=0)
meg_reshape_master = data.frame(matrix(ncol = 12, nrow = 0))
x <- c("Initials", "SDAN", "MEG_tab", "Task_Date", "Days_since_scan", "Task_Name", "Task_Number", "Include",
"Experimenter1", "Experimenter2", "MEG_Scan_Notes", "Photo_PII_Removal")
colnames(meg_reshape_master) <- x
for(j in seq_len(max_MEG)) {
iter <- as.numeric(j)
# iter=3
meg_reshape <- meg_combined %>%
select(Initials, SDAN, MEG_tab, Task_Date, Days_since_scan, paste0("Task", iter, "_Name"), paste0("Task", iter, "_Number"), paste0("Task", iter, "_Include"),
Experimenter1, Experimenter2, MEG_Scan_Notes, Photo_PII_Removal)
names(meg_reshape)[names(meg_reshape) == paste0("Task", iter, "_Name")] <- "Task_Name"
names(meg_reshape)[names(meg_reshape) == paste0("Task", iter, "_Number")] <- "Task_Number"
names(meg_reshape)[names(meg_reshape) == paste0("Task", iter, "_Include")] <- "Include"
meg_reshape_master <- merge.default(meg_reshape_master, meg_reshape, all=TRUE) %>% filter(!is.na(Task_Name))
}
##### list of MEG from IRTA trackers
meg_list <- task_reshape_master %>% filter(str_detect(Task_Name, "MEG")) %>%
select(Initials, SDAN, IRTA_tracker, Participant_Type2, Task_Name, Task_Number, Task_Date)
##### checking for merge conflicts/missing information:
MEG_task_QC <- meg_reshape_master %>% filter(str_detect(Task_Name, "MEG")) %>% merge.default(meg_list, ., all=TRUE) %>%
select(-Photo_PII_Removal, -Experimenter1, -Experimenter2)
of_interest <- c('IRTA_tracker', 'Task_Number', 'Include', 'Days_since_scan', 'MEG_tab')
MEG_task_QC[of_interest] <- lapply(MEG_task_QC[of_interest], replace_na, '666')
numeric <- c('Task_Number', 'Include', 'Days_since_scan')
MEG_task_QC[numeric] <- lapply(MEG_task_QC[numeric], as.numeric)
meg_missing_date <- MEG_task_QC %>% filter(is.na(Task_Date)) %>% mutate(reason1="Missing task date")
meg_missing_number <- MEG_task_QC %>% filter(Days_since_scan<0 | Days_since_scan=='666') %>% filter(Task_Number=='666') %>% mutate(reason2="Missing task number")
meg_missing_qc_tracker <- MEG_task_QC %>% filter(MEG_tab=="666") %>% mutate(reason3="Missing from MEG tracker")
meg_missing_qc <- MEG_task_QC %>% filter(Task_Number!="777" & Task_Number!="999") %>% filter(Include=="666") %>% mutate(reason4="Missing QC status information")
meg_missing_irta_tracker <- MEG_task_QC %>% filter(IRTA_tracker=="666") %>% mutate(reason5="Missing from IRTA tracker")
meg_duplicate_date <- MEG_task_QC %>% group_by(Initials, Task_Name, Task_Date) %>% filter(n()>1) %>% ungroup() %>% mutate(reason6="Duplicate MEG date (check dates but also potential task number mismatch")
meg_duplicate_number1 <- MEG_task_QC %>% filter(Task_Name!="MEG_Resting_state") %>% filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(Initials, Task_Name, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason7="Duplicate MEG task number (check number but also check potential date mismatch)")
meg_duplicate_number2 <- MEG_task_QC %>% filter(Task_Name=="MEG_Resting_state") %>% filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(Initials, MEG_tab, Task_Number) %>% filter(n()>1) %>% ungroup() %>% mutate(reason7="Duplicate MEG task number (check number but also check potential date mismatch)")
MEG_missing <- merge.default(meg_missing_date, meg_missing_number, all=TRUE) %>% merge.default(., meg_missing_qc_tracker, all=TRUE) %>%
merge.default(., meg_missing_qc, all=TRUE) %>% merge.default(., meg_missing_irta_tracker, all=TRUE) %>% merge.default(., meg_duplicate_date, all=TRUE) %>%
merge.default(., meg_duplicate_number1, all=TRUE) %>% merge.default(., meg_duplicate_number2, all=TRUE)
MEG_missing$QC_missing <- paste(MEG_missing$reason1, MEG_missing$reason2, MEG_missing$reason3, MEG_missing$reason4,
MEG_missing$reason5, MEG_missing$reason6, MEG_missing$reason7, sep = "; ")
MEG_missing$QC_missing <- gsub("NA; ", "", MEG_missing$QC_missing, fixed=TRUE)
MEG_missing$QC_missing <- gsub("; NA", "", MEG_missing$QC_missing, fixed=TRUE)
MEG_missing <- MEG_missing %>% select(-matches("reason")) %>% arrange(Initials, Task_Date)
MEG_missing[of_interest] <- lapply(MEG_missing[of_interest], na_if, '666')
MEG_task_QC[of_interest] <- lapply(MEG_task_QC[of_interest], na_if, '666')
MEG_task_QC <- MEG_task_QC %>% select(SDAN, Initials, Task_Name, Task_Date, Include)
##### list of MPRAGE from IRTA trackers
mprage_list <- task_reshape_master %>% filter(str_detect(Task_Name, "_scan") | Task_Name=="MPRAGE") %>%
filter(Task_Number!="777" & Task_Number!="999") %>%
group_by(Initials) %>% arrange(Task_Date) %>% slice(n()) %>% ungroup() %>%
select(Initials, SDAN, IRTA_tracker, Participant_Type2, Task_Name, Task_Date) %>%
rename(MPRAGE="Task_Name") %>% rename(MPRAGE_Date="Task_Date")
mprage_list$MPRAGE <- gsub("MID_scan", "Other_MRI_scan", mprage_list$MPRAGE)
mprage_list$MPRAGE <- gsub("Resting_state_scan", "Other_MRI_scan", mprage_list$MPRAGE)
mprage_list$MPRAGE <- gsub("DTI_scan", "Other_MRI_scan", mprage_list$MPRAGE)
mprage_list$MPRAGE <- gsub("MMI_3blocks_scan", "Other_MRI_scan", mprage_list$MPRAGE)
##### checking MPRAGE listed
MEG_mprage <- meg_list %>% filter(Task_Name=="MEG_MMI") %>% merge.default(., mprage_list, all=TRUE) %>%
filter(Task_Number!="777" & Task_Number!="999")
MEG_mprage$Days_between_scans <- as.numeric(difftime(MEG_mprage$Task_Date, MEG_mprage$MPRAGE_Date, tz="", units = "days")) %>% round(., digits=0)
MEG_mprage <- MEG_mprage %>% filter(is.na(Days_between_scans) | Days_between_scans>365) %>% select(-Task_Name, -Task_Number, -MPRAGE)
######################################################################################
#####Merge of QC information with main task tracker, drops inconsistencies, hence why accuracy is so important
task_QC <- merge.default(MID_task_QC, MMI_task_QC, all=TRUE) %>% merge.default(., MEG_task_QC, all=TRUE)
task_reshape_master_QC <- left_join(task_reshape_master, task_QC, all=TRUE)
######################################################################################
#######Export of QC information
if (weekdays(as.Date(todays_date_formatted))=="Wednesday") {
print("Today is Wednesday -> exporting QC reports")
# general reports - exported into individual IRTA trackers
for(j in seq_along(current_IRTAs_full)) {
iter <- as.numeric(j)
# iter=1
IRTA_full <- current_IRTAs_full[iter]
IRTA_init <- current_IRTAs_init[iter]
task_errors_combined %>% filter(IRTA_tracker==eval(IRTA_init)) %>% write_xlsx(paste0(referrals_location, IRTA_full, "/", IRTA_init, "_task_qc_", todays_date_formatted, ".xlsx"))
}
task_errors_combined %>% filter(IRTA_tracker=="REMOVED") %>% write_xlsx(paste0(IRTA_tracker_location,"QCing/REMOVED_task_qc_", todays_date_formatted, ".xlsx")) # if file empty, everything is perfect
# Task specific QC reports
MMI_missing_combined %>% write_xlsx(paste0(IRTA_tracker_location,"QCing/MMI_check_", todays_date_formatted, ".xlsx")) # if file empty, everything is perfect
MID_missing_combined %>% write_xlsx(paste0(IRTA_tracker_location,"QCing/MID_check_", todays_date_formatted, ".xlsx")) # if file empty, everything is perfect
MEG_missing %>% write_xlsx(paste0(IRTA_tracker_location,"QCing/MEG_check_", todays_date_formatted, ".xlsx"))
MEG_mprage %>% write_xlsx(paste0(IRTA_tracker_location,"QCing/MEG_need_mprage_", todays_date_formatted, ".xlsx"))
} else {
print("QC reports not produced - only produced on Wednesdays")
}
######################################################################################
#######Saving Master IRTA sheet in typical format
master_IRTA_latest %>% write_xlsx(paste0(IRTA_tracker_location,"MASTER_IRTA_DATABASE.xlsx")) # will not save if someone else has this dataset open
master_IRTA_latest %>% write_xlsx(paste0(backup_location,"MASTER_IRTA_DATABASE","_",todays_date_formatted,".xlsx"))
# also an option to add a password to a saved excel, e.g. = password = "string"
# checking saved properly
file_save_check <- list.files(path = paste0(IRTA_tracker_location), pattern = "^MASTER_IRTA_DATABASE.xlsx", all.files = FALSE,
full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
file_save_check_time <- file.mtime(paste0(IRTA_tracker_location, file_save_check)) %>% as.Date()
file_save_check_combined <- tibble(File=c(file_save_check), Date=c(file_save_check_time))
file_save_check_combined$date_diff <- as.numeric(difftime(todays_date_formatted, file_save_check_combined$Date, tz="", units = "days"))
if (file_save_check_combined$date_diff[1]==0) {
print("Exported as 'MASTER_IRTA_DATABASE'")
} else {
print("Conflict: exporting as 'MASTER_IRTA_DATABASE_updated'")
master_IRTA_latest %>% write_xlsx(paste0(IRTA_tracker_location,"MASTER_IRTA_DATABASE_updated.xlsx"))
}
######################################################################################
#######Saving Tasks Dataset
task_reshape_master_QC %>% write_xlsx(paste0(IRTA_tracker_location,"TASKS_DATABASE_QC.xlsx"))
task_reshape_master_QC %>% write_xlsx(paste0(backup_location,"TASKS_DATABASE_QC","_",todays_date_formatted,".xlsx"))
# checking saved properly
file_save_check <- list.files(path = paste0(IRTA_tracker_location), pattern = "^TASKS_DATABASE_QC.xlsx", all.files = FALSE,
full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
file_save_check_time <- file.mtime(paste0(IRTA_tracker_location, file_save_check)) %>% as.Date()
file_save_check_combined <- tibble(File=c(file_save_check), Date=c(file_save_check_time))
file_save_check_combined$date_diff <- as.numeric(difftime(todays_date_formatted, file_save_check_combined$Date, tz="", units = "days"))
if (file_save_check_combined$date_diff[1]==0) {
print("Exported as 'TASKS_DATABASE_QC'")
} else {
print("Conflict: exporting as 'TASKS_DATABASE_QC_updated'")
task_reshape_master_QC %>% write_xlsx(paste0(IRTA_tracker_location,"TASKS_DATABASE_QC_updated.xlsx"))
}
######################################################################################
#######Saving Screens Dataset
master_IRTA_screens_latest %>% write_xlsx(paste0(IRTA_tracker_location,"REFERRAL_AND_SCREENING_DATABASE.xlsx"))
master_IRTA_screens_latest %>% write_xlsx(paste0(backup_location,"REFERRAL_AND_SCREENING_DATABASE","_",todays_date_formatted,".xlsx"))
# checking saved properly
file_save_check <- list.files(path = paste0(IRTA_tracker_location), pattern = "^REFERRAL_AND_SCREENING_DATABASE.xlsx", all.files = FALSE,
full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
file_save_check_time <- file.mtime(paste0(IRTA_tracker_location, file_save_check)) %>% as.Date()
file_save_check_combined <- tibble(File=c(file_save_check), Date=c(file_save_check_time))
file_save_check_combined$date_diff <- as.numeric(difftime(todays_date_formatted, file_save_check_combined$Date, tz="", units = "days"))
if (file_save_check_combined$date_diff[1]==0) {
print("Exported as 'REFERRAL_AND_SCREENING_DATABASE'")
} else {
print("Conflict: exporting as 'REFERRAL_AND_SCREENING_DATABASE_updated'")
master_IRTA_screens_latest %>% write_xlsx(paste0(IRTA_tracker_location,"REFERRAL_AND_SCREENING_DATABASE_updated.xlsx"))
}
######################################################################################
#######Saving Old Screens Dataset
master_IRTA_oldest_screens_latest %>% write_xlsx(paste0(IRTA_tracker_location,"OLD_REFERRALS_DATABASE.xlsx"))
master_IRTA_oldest_screens_latest %>% write_xlsx(paste0(backup_location,"OLD_REFERRALS_DATABASE","_",todays_date_formatted,".xlsx"))
# checking saved properly
file_save_check <- list.files(path = paste0(IRTA_tracker_location), pattern = "^OLD_REFERRALS_DATABASE.xlsx", all.files = FALSE,
full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
file_save_check_time <- file.mtime(paste0(IRTA_tracker_location, file_save_check)) %>% as.Date()
file_save_check_combined <- tibble(File=c(file_save_check), Date=c(file_save_check_time))
file_save_check_combined$date_diff <- as.numeric(difftime(todays_date_formatted, file_save_check_combined$Date, tz="", units = "days"))
if (file_save_check_combined$date_diff[1]==0) {
print("Exported as 'OLD_REFERRALS_DATABASE'")
} else {
print("Conflict: exporting as 'OLD_REFERRALS_DATABASE_updated'")
master_IRTA_oldest_screens_latest %>% write_xlsx(paste0(IRTA_tracker_location,"OLD_REFERRALS_DATABASE_updated.xlsx"))
}
######################################################################################
#######Saving MMI recovery subset
MMI_recovery_combined2 %>% write_xlsx(paste0(database_location, "COVID19/MMI_recovery_subset.xlsx"))
MMI_recovery_combined2 %>% write_xlsx(paste0(database_location, "COVID19/old/MMI_recovery_subset_", todays_date_formatted, ".xlsx"))
# checking saved properly
file_save_check <- list.files(path = paste0(database_location, "COVID19/"), pattern = "^MMI_recovery_subset.xlsx", all.files = FALSE,
full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
file_save_check_time <- file.mtime(paste0(database_location, "COVID19/", file_save_check)) %>% as.Date()
file_save_check_combined <- tibble(File=c(file_save_check), Date=c(file_save_check_time))
file_save_check_combined$date_diff <- as.numeric(difftime(todays_date_formatted, file_save_check_combined$Date, tz="", units = "days"))
if (file_save_check_combined$date_diff[1]==0) {
print("Exported as 'MMI_recovery_subset'")
} else {
print("Conflict: exporting as 'MMI_recovery_subset_updated'")
MMI_recovery_combined2 %>% write_xlsx(paste0(database_location, "COVID19/MMI_recovery_subset_updated.xlsx"))
}
#####Removing unnecessary variables
rm(list=ls(pattern="_active_data"))
rm(list=ls(pattern="_meg_data"))
rm(list=ls(pattern="_current_screens"))
rm(list=ls(pattern="_old_screens"))
rm(list=ls(pattern="iter"))
rm(list=ls(pattern="_sets"))
rm(list=ls(pattern="missing"))
rm(list=ls(pattern="_reordered"))
rm(list=ls(pattern="_template"))
rm(list=ls(pattern="duplicate"))
rm(list=ls(pattern="age_"))
rm(IRTA_full, IRTA_init, j, irta_tracker_columns, date_variabes, split1, i, eligibility_variables, x, row, u, numeric, of_interest, o)
rm(MID_task_QC, MMI_task_QC, float, task_reshape, task_reshape_master, task_QC, meg_reshape_master, meg_reshape, MEG_tasks, meg_combined,
MEG_task_QC, meg_list, MID_check, RS_check, task_check_clinical_code, task_name_check, task_number_check, prev_task_database,
task_errors_combined, task_names, MID_resting_discrepancy, task_master_file, task_master_file_time, task_master_combined, file_save_check,
file_save_check_time, file_save_check_combined, historical_check, supreme_irta_list, supreme_file1, supreme_file2, supreme_file2a, supreme_file_qc,
supreme_incomplete, MMI_recovery_files, MMI_recovery_file_times, MMI_recovery_combined, irta_tracker_check, MMI_recovery_split)
rm(get_last_scan, get_last_visit, has_scan, is_last_v, print_dates, print_notes)