-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
38 lines (31 loc) · 1.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/env python
import sys
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
# input
input_location = sys.argv[1]
# output
model_location = sys.argv[2]
def get_ds(subset):
return tf.keras.utils.image_dataset_from_directory(
input_location, validation_split=0.2, subset=subset,
seed=1234, image_size=(244, 244), batch_size=32)
train_ds = get_ds("training")
val_ds = get_ds("validation")
model = tf.keras.Sequential([
tf.keras.layers.Rescaling(1./255),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(2)])
# Fit and save
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])
model.fit(train_ds, validation_data=val_ds, epochs=3)
model.save(model_location)