This repository has been archived by the owner on Mar 19, 2024. It is now read-only.
forked from cockroachdb/pebble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerging_iter.go
1148 lines (1071 loc) · 44.7 KB
/
merging_iter.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 The LevelDB-Go and Pebble Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package pebble
import (
"bytes"
"fmt"
"runtime/debug"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble/internal/base"
"github.com/cockroachdb/pebble/internal/invariants"
"github.com/cockroachdb/pebble/internal/keyspan"
)
type mergingIterLevel struct {
iter internalIteratorWithStats
// rangeDelIter is set to the range-deletion iterator for the level. When
// configured with a levelIter, this pointer changes as sstable boundaries
// are crossed. See levelIter.initRangeDel and the Range Deletions comment
// below.
rangeDelIter keyspan.FragmentIterator
// iterKey and iterValue cache the current key and value iter are pointed at.
iterKey *InternalKey
iterValue []byte
// smallestUserKey, largestUserKey, isLargestUserKeyRangeDelSentinel are set using the sstable
// boundary keys when using levelIter. See levelIter comment and the Range Deletions comment
// below.
smallestUserKey, largestUserKey []byte
isLargestUserKeyRangeDelSentinel bool
isSyntheticIterBoundsKey bool
// tombstone caches the tombstone rangeDelIter is currently pointed at. If
// tombstone.Valid() is false, there are no further tombstones within the
// current sstable in the current iterator direction. The cached tombstone is
// only valid for the levels in the range [0,heap[0].index]. This avoids
// positioning tombstones at lower levels which cannot possibly shadow the
// current key.
tombstone keyspan.Span
}
// mergingIter provides a merged view of multiple iterators from different
// levels of the LSM.
//
// The core of a mergingIter is a heap of internalIterators (see
// mergingIterHeap). The heap can operate as either a min-heap, used during
// forward iteration (First, SeekGE, Next) or a max-heap, used during reverse
// iteration (Last, SeekLT, Prev). The heap is initialized in calls to First,
// Last, SeekGE, and SeekLT. A call to Next or Prev takes the current top
// element on the heap, advances its iterator, and then "fixes" the heap
// property. When one of the child iterators is exhausted during Next/Prev
// iteration, it is removed from the heap.
//
// Range Deletions
//
// A mergingIter can optionally be configured with a slice of range deletion
// iterators. The range deletion iterator slice must exactly parallel the point
// iterators and the range deletion iterator must correspond to the same level
// in the LSM as the point iterator. Note that each memtable and each table in
// L0 is a different "level" from the mergingIter perspective. So level 0 below
// does not correspond to L0 in the LSM.
//
// A range deletion iterator iterates over fragmented range tombstones. Range
// tombstones are fragmented by splitting them at any overlapping points. This
// fragmentation guarantees that within an sstable tombstones will either be
// distinct or will have identical start and end user keys. While range
// tombstones are fragmented within an sstable, the start and end keys are not truncated
// to sstable boundaries. This is necessary because the tombstone end key is
// exclusive and does not have a sequence number. Consider an sstable
// containing the range tombstone [a,c)#9 and the key "b#8". The tombstone must
// delete "b#8", yet older versions of "b" might spill over to the next
// sstable. So the boundary key for this sstable must be "b#8". Adjusting the
// end key of tombstones to be optionally inclusive or contain a sequence
// number would be possible solutions (such solutions have potentially serious
// issues: tombstones have exclusive end keys since an inclusive deletion end can
// be converted to an exclusive one while the reverse transformation is not possible;
// the semantics of a sequence number for the end key of a range tombstone are murky).
//
// The approach taken here performs an
// implicit truncation of the tombstone to the sstable boundaries.
//
// During initialization of a mergingIter, the range deletion iterators for
// batches, memtables, and L0 tables are populated up front. Note that Batches
// and memtables index unfragmented tombstones. Batch.newRangeDelIter() and
// memTable.newRangeDelIter() fragment and cache the tombstones on demand. The
// L1-L6 range deletion iterators are populated by levelIter. When configured
// to load range deletion iterators, whenever a levelIter loads a table it
// loads both the point iterator and the range deletion
// iterator. levelIter.rangeDelIter is configured to point to the right entry
// in mergingIter.levels. The effect of this setup is that
// mergingIter.levels[i].rangeDelIter always contains the fragmented range
// tombstone for the current table in level i that the levelIter has open.
//
// Another crucial mechanism of levelIter is that it materializes fake point
// entries for the table boundaries if the boundary is range deletion
// key. Consider a table that contains only a range tombstone [a-e)#10. The
// sstable boundaries for this table will be a#10,15 and
// e#72057594037927935,15. During forward iteration levelIter will return
// e#72057594037927935,15 as a key. During reverse iteration levelIter will
// return a#10,15 as a key. These sentinel keys act as bookends to point
// iteration and allow mergingIter to keep a table and its associated range
// tombstones loaded as long as there are keys at lower levels that are within
// the bounds of the table.
//
// The final piece to the range deletion puzzle is the LSM invariant that for a
// given key K newer versions of K can only exist earlier in the level, or at
// higher levels of the tree. For example, if K#4 exists in L3, k#5 can only
// exist earlier in the L3 or in L0, L1, L2 or a memtable. Get very explicitly
// uses this invariant to find the value for a key by walking the LSM level by
// level. For range deletions, this invariant means that a range deletion at
// level N will necessarily shadow any keys within its bounds in level Y where
// Y > N. One wrinkle to this statement is that it only applies to keys that
// lie within the sstable bounds as well, but we get that guarantee due to the
// way the range deletion iterator and point iterator are bound together by a
// levelIter.
//
// Tying the above all together, we get a picture where each level (index in
// mergingIter.levels) is composed of both point operations (pX) and range
// deletions (rX). The range deletions for level X shadow both the point
// operations and range deletions for level Y where Y > X allowing mergingIter
// to skip processing entries in that shadow. For example, consider the
// scenario:
//
// r0: a---e
// r1: d---h
// r2: g---k
// r3: j---n
// r4: m---q
//
// This is showing 5 levels of range deletions. Consider what happens upon
// SeekGE("b"). We first seek the point iterator for level 0 (the point values
// are not shown above) and we then seek the range deletion iterator. That
// returns the tombstone [a,e). This tombstone tells us that all keys in the
// range [a,e) in lower levels are deleted so we can skip them. So we can
// adjust the seek key to "e", the tombstone end key. For level 1 we seek to
// "e" and find the range tombstone [d,h) and similar logic holds. By the time
// we get to level 4 we're seeking to "n".
//
// One consequence of not truncating tombstone end keys to sstable boundaries
// is the seeking process described above cannot always seek to the tombstone
// end key in the older level. For example, imagine in the above example r3 is
// a partitioned level (i.e., L1+ in our LSM), and the sstable containing [j,
// n) has "k" as its upper boundary. In this situation, compactions involving
// keys at or after "k" can output those keys to r4+, even if they're newer
// than our tombstone [j, n). So instead of seeking to "n" in r4 we can only
// seek to "k". To achieve this, the instance variable `largestUserKey.`
// maintains the upper bounds of the current sstables in the partitioned
// levels. In this example, `levels[3].largestUserKey` holds "k", telling us to
// limit the seek triggered by a tombstone in r3 to "k".
//
// During actual iteration levels can contain both point operations and range
// deletions. Within a level, when a range deletion contains a point operation
// the sequence numbers must be checked to determine if the point operation is
// newer or older than the range deletion tombstone. The mergingIter maintains
// the invariant that the range deletion iterators for all levels newer that
// the current iteration key (L < m.heap.items[0].index) are positioned at the
// next (or previous during reverse iteration) range deletion tombstone. We
// know those levels don't contain a range deletion tombstone that covers the
// current key because if they did the current key would be deleted. The range
// deletion iterator for the current key's level is positioned at a range
// tombstone covering or past the current key. The position of all of other
// range deletion iterators is unspecified. Whenever a key from those levels
// becomes the current key, their range deletion iterators need to be
// positioned. This lazy positioning avoids seeking the range deletion
// iterators for keys that are never considered. (A similar bit of lazy
// evaluation can be done for the point iterators, but is still TBD).
//
// For a full example, consider the following setup:
//
// p0: o
// r0: m---q
//
// p1: n p
// r1: g---k
//
// p2: b d i
// r2: a---e q----v
//
// p3: e
// r3:
//
// If we start iterating from the beginning, the first key we encounter is "b"
// in p2. When the mergingIter is pointing at a valid entry, the range deletion
// iterators for all of the levels < m.heap.items[0].index are positioned at
// the next range tombstone past the current key. So r0 will point at [m,q) and
// r1 at [g,k). When the key "b" is encountered, we check to see if the current
// tombstone for r0 or r1 contains it, and whether the tombstone for r2, [a,e),
// contains and is newer than "b".
//
// Advancing the iterator finds the next key at "d". This is in the same level
// as the previous key "b" so we don't have to reposition any of the range
// deletion iterators, but merely check whether "d" is now contained by any of
// the range tombstones at higher levels or has stepped past the range
// tombstone in its own level or higher levels. In this case, there is nothing to be done.
//
// Advancing the iterator again finds "e". Since "e" comes from p3, we have to
// position the r3 range deletion iterator, which is empty. "e" is past the r2
// tombstone of [a,e) so we need to advance the r2 range deletion iterator to
// [q,v).
//
// The next key is "i". Because this key is in p2, a level above "e", we don't
// have to reposition any range deletion iterators and instead see that "i" is
// covered by the range tombstone [g,k). The iterator is immediately advanced
// to "n" which is covered by the range tombstone [m,q) causing the iterator to
// advance to "o" which is visible.
//
// TODO(peter,rangedel): For testing, advance the iterator through various
// scenarios and have each step display the current state (i.e. the current
// heap and range-del iterator positioning).
type mergingIter struct {
logger Logger
split Split
dir int
snapshot uint64
levels []mergingIterLevel
heap mergingIterHeap
err error
prefix []byte
lower []byte
upper []byte
stats InternalIteratorStats
// Elide range tombstones from being returned during iteration. Set to true
// when mergingIter is a child of Iterator and the mergingIter is processing
// range tombstones.
elideRangeTombstones bool
}
// mergingIter implements the base.InternalIterator interface.
var _ base.InternalIterator = (*mergingIter)(nil)
// newMergingIter returns an iterator that merges its input. Walking the
// resultant iterator will return all key/value pairs of all input iterators
// in strictly increasing key order, as defined by cmp. It is permissible to
// pass a nil split parameter if the caller is never going to call
// SeekPrefixGE.
//
// The input's key ranges may overlap, but there are assumed to be no duplicate
// keys: if iters[i] contains a key k then iters[j] will not contain that key k.
//
// None of the iters may be nil.
func newMergingIter(
logger Logger, cmp Compare, split Split, iters ...internalIterator,
) *mergingIter {
m := &mergingIter{}
levels := make([]mergingIterLevel, len(iters))
for i := range levels {
levels[i].iter = base.WrapIterWithStats(iters[i])
}
m.init(&IterOptions{logger: logger}, cmp, split, levels...)
return m
}
func (m *mergingIter) init(
opts *IterOptions, cmp Compare, split Split, levels ...mergingIterLevel,
) {
m.err = nil // clear cached iteration error
m.logger = opts.getLogger()
if opts != nil {
m.lower = opts.LowerBound
m.upper = opts.UpperBound
}
m.snapshot = InternalKeySeqNumMax
m.levels = levels
m.heap.cmp = cmp
m.split = split
if cap(m.heap.items) < len(levels) {
m.heap.items = make([]mergingIterItem, 0, len(levels))
} else {
m.heap.items = m.heap.items[:0]
}
}
func (m *mergingIter) initHeap() {
m.heap.items = m.heap.items[:0]
for i := range m.levels {
if l := &m.levels[i]; l.iterKey != nil {
m.heap.items = append(m.heap.items, mergingIterItem{
index: i,
key: *l.iterKey,
value: l.iterValue,
})
} else {
m.err = firstError(m.err, l.iter.Error())
if m.err != nil {
return
}
}
}
m.heap.init()
}
func (m *mergingIter) initMinHeap() {
m.dir = 1
m.heap.reverse = false
m.initHeap()
m.initMinRangeDelIters(-1)
}
// The level of the previous top element was oldTopLevel. Note that all range delete
// iterators < oldTopLevel are positioned past the key of the previous top element and
// the range delete iterator == oldTopLevel is positioned at or past the key of the
// previous top element. We need to position the range delete iterators from oldTopLevel + 1
// to the level of the current top element.
func (m *mergingIter) initMinRangeDelIters(oldTopLevel int) {
if m.heap.len() == 0 {
return
}
// Position the range-del iterators at levels <= m.heap.items[0].index.
item := &m.heap.items[0]
for level := oldTopLevel + 1; level <= item.index; level++ {
l := &m.levels[level]
if l.rangeDelIter == nil {
continue
}
l.tombstone = keyspan.SeekGE(m.heap.cmp, l.rangeDelIter, item.key.UserKey, m.snapshot)
}
}
func (m *mergingIter) initMaxHeap() {
m.dir = -1
m.heap.reverse = true
m.initHeap()
m.initMaxRangeDelIters(-1)
}
// The level of the previous top element was oldTopLevel. Note that all range delete
// iterators < oldTopLevel are positioned before the key of the previous top element and
// the range delete iterator == oldTopLevel is positioned at or before the key of the
// previous top element. We need to position the range delete iterators from oldTopLevel + 1
// to the level of the current top element.
func (m *mergingIter) initMaxRangeDelIters(oldTopLevel int) {
if m.heap.len() == 0 {
return
}
// Position the range-del iterators at levels <= m.heap.items[0].index.
item := &m.heap.items[0]
for level := oldTopLevel + 1; level <= item.index; level++ {
l := &m.levels[level]
if l.rangeDelIter == nil {
continue
}
l.tombstone = keyspan.SeekLE(m.heap.cmp, l.rangeDelIter, item.key.UserKey, m.snapshot)
}
}
func (m *mergingIter) switchToMinHeap() {
if m.heap.len() == 0 {
if m.lower != nil {
m.SeekGE(m.lower, false /* trySeekUsingNext */)
} else {
m.First()
}
return
}
// We're switching from using a max heap to a min heap. We need to advance
// any iterator that is less than or equal to the current key. Consider the
// scenario where we have 2 iterators being merged (user-key:seq-num):
//
// i1: *a:2 b:2
// i2: a:1 b:1
//
// The current key is a:2 and i2 is pointed at a:1. When we switch to forward
// iteration, we want to return a key that is greater than a:2.
key := m.heap.items[0].key
cur := &m.levels[m.heap.items[0].index]
for i := range m.levels {
l := &m.levels[i]
if l == cur {
continue
}
// If the iterator is exhausted, it may be out of bounds if range
// deletions modified our search key as we descended. we need to
// reposition it within the search bounds. If the current key is a
// range tombstone, the iterator might still be exhausted but at a
// sstable boundary sentinel. It would be okay to reposition an
// interator like this only through successive Next calls, except that
// it would violate the levelIter's invariants by causing it to return
// a key before the lower bound.
//
// bounds = [ f, _ )
// L0: [ b ] [ f* z ]
// L1: [ a |----| k y ]
// L2: [ c (d) ] [ e g m ]
// L3: [ x ]
//
// * - current key [] - table bounds () - heap item
//
// In the above diagram, the L2 iterator is positioned at a sstable
// boundary (d) outside the lower bound (f). It arrived here from a
// seek whose seek-key was modified by a range tombstone. If we called
// Next on the L2 iterator, it would return e, violating its lower
// bound. Instead, we seek it to >= f and Next from there.
if l.iterKey == nil || (m.lower != nil && l.isSyntheticIterBoundsKey &&
l.iterKey.IsExclusiveSentinel() &&
m.heap.cmp(l.iterKey.UserKey, m.lower) <= 0) {
if m.lower != nil {
l.iterKey, l.iterValue = l.iter.SeekGE(m.lower, false /* trySeekUsingNext */)
} else {
l.iterKey, l.iterValue = l.iter.First()
}
}
for ; l.iterKey != nil; l.iterKey, l.iterValue = l.iter.Next() {
if base.InternalCompare(m.heap.cmp, key, *l.iterKey) < 0 {
// key < iter-key
break
}
// key >= iter-key
}
}
// Special handling for the current iterator because we were using its key
// above. The iterator cur.iter may still be exhausted at a sstable boundary
// sentinel. Similar to the logic applied to the other levels, in these
// cases we seek the iterator to the first key in order to avoid violating
// levelIter's invariants. See the example in the for loop above.
if m.lower != nil && cur.isSyntheticIterBoundsKey && cur.iterKey.IsExclusiveSentinel() &&
m.heap.cmp(cur.iterKey.UserKey, m.lower) <= 0 {
cur.iterKey, cur.iterValue = cur.iter.SeekGE(m.lower, false /* trySeekUsingNext */)
} else {
cur.iterKey, cur.iterValue = cur.iter.Next()
}
m.initMinHeap()
}
func (m *mergingIter) switchToMaxHeap() {
if m.heap.len() == 0 {
if m.upper != nil {
m.SeekLT(m.upper)
} else {
m.Last()
}
return
}
// We're switching from using a min heap to a max heap. We need to backup any
// iterator that is greater than or equal to the current key. Consider the
// scenario where we have 2 iterators being merged (user-key:seq-num):
//
// i1: a:2 *b:2
// i2: a:1 b:1
//
// The current key is b:2 and i2 is pointing at b:1. When we switch to
// reverse iteration, we want to return a key that is less than b:2.
key := m.heap.items[0].key
cur := &m.levels[m.heap.items[0].index]
for i := range m.levels {
l := &m.levels[i]
if l == cur {
continue
}
// If the iterator is exhausted, it may be out of bounds if range
// deletions modified our search key as we descended. we need to
// reposition it within the search bounds. If the current key is a
// range tombstone, the iterator might still be exhausted but at a
// sstable boundary sentinel. It would be okay to reposition an
// interator like this only through successive Prev calls, except that
// it would violate the levelIter's invariants by causing it to return
// a key beyond the upper bound.
//
// bounds = [ _, g )
// L0: [ b ] [ f* z ]
// L1: [ a |-------| k y ]
// L2: [ c d ] h [(i) m ]
// L3: [ e x ]
//
// * - current key [] - table bounds () - heap item
//
// In the above diagram, the L2 iterator is positioned at a sstable
// boundary (i) outside the upper bound (g). It arrived here from a
// seek whose seek-key was modified by a range tombstone. If we called
// Prev on the L2 iterator, it would return h, violating its upper
// bound. Instead, we seek it to < g, and Prev from there.
if l.iterKey == nil || (m.upper != nil && l.isSyntheticIterBoundsKey &&
l.iterKey.IsExclusiveSentinel() && m.heap.cmp(l.iterKey.UserKey, m.upper) >= 0) {
if m.upper != nil {
l.iterKey, l.iterValue = l.iter.SeekLT(m.upper)
} else {
l.iterKey, l.iterValue = l.iter.Last()
}
}
for ; l.iterKey != nil; l.iterKey, l.iterValue = l.iter.Prev() {
if base.InternalCompare(m.heap.cmp, key, *l.iterKey) > 0 {
// key > iter-key
break
}
// key <= iter-key
}
}
// Special handling for the current iterator because we were using its key
// above. The iterator cur.iter may still be exhausted at a sstable boundary
// sentinel. Similar to the logic applied to the other levels, in these
// cases we seek the iterator to in order to avoid violating levelIter's
// invariants by Prev-ing through files. See the example in the for loop
// above.
if m.upper != nil && cur.isSyntheticIterBoundsKey && cur.iterKey.IsExclusiveSentinel() &&
m.heap.cmp(cur.iterKey.UserKey, m.upper) >= 0 {
cur.iterKey, cur.iterValue = cur.iter.SeekLT(m.upper)
} else {
cur.iterKey, cur.iterValue = cur.iter.Prev()
}
m.initMaxHeap()
}
// Steps to the next entry. item is the current top item in the heap.
func (m *mergingIter) nextEntry(item *mergingIterItem) {
l := &m.levels[item.index]
oldTopLevel := item.index
oldRangeDelIter := l.rangeDelIter
if l.iterKey, l.iterValue = l.iter.Next(); l.iterKey != nil {
item.key, item.value = *l.iterKey, l.iterValue
if m.heap.len() > 1 {
m.heap.fix(0)
}
if l.rangeDelIter != oldRangeDelIter {
// The rangeDelIter changed which indicates that the l.iter moved to the
// next sstable. We have to update the tombstone for oldTopLevel as well.
oldTopLevel--
}
} else {
m.err = l.iter.Error()
if m.err == nil {
m.heap.pop()
}
}
// The cached tombstones are only valid for the levels
// [0,oldTopLevel]. Updated the cached tombstones for any levels in the range
// [oldTopLevel+1,heap[0].index].
m.initMinRangeDelIters(oldTopLevel)
}
// isNextEntryDeleted() starts from the current entry (as the next entry) and if it is deleted,
// moves the iterators forward as needed and returns true, else it returns false. item is the top
// item in the heap.
func (m *mergingIter) isNextEntryDeleted(item *mergingIterItem) bool {
// Look for a range deletion tombstone containing item.key at higher
// levels (level < item.index). If we find such a range tombstone we know
// it deletes the key in the current level. Also look for a range
// deletion at the current level (level == item.index). If we find such a
// range deletion we need to check whether it is newer than the current
// entry.
for level := 0; level <= item.index; level++ {
l := &m.levels[level]
if l.rangeDelIter == nil || !l.tombstone.Valid() {
// If l.tombstone.Valid() is false, there are no further tombstones
// in the current sstable in the current (forward) iteration
// direction.
continue
}
if m.heap.cmp(l.tombstone.End, item.key.UserKey) <= 0 {
// The current key is at or past the tombstone end key.
//
// NB: for the case that this l.rangeDelIter is provided by a levelIter we know that
// the levelIter must be positioned at a key >= item.key. So it is sufficient to seek the
// current l.rangeDelIter (since any range del iterators that will be provided by the
// levelIter in the future cannot contain item.key). Also, it is possible that we
// will encounter parts of the range delete that should be ignored -- we handle that
// below.
l.tombstone = keyspan.SeekGE(m.heap.cmp, l.rangeDelIter, item.key.UserKey, m.snapshot)
}
if !l.tombstone.Valid() {
continue
}
// Reasoning for correctness of untruncated tombstone handling when the untruncated
// tombstone is at a higher level:
// The iterator corresponding to this tombstone is still in the heap so it must be
// positioned >= item.key. Which means the Largest key bound of the sstable containing this
// tombstone is >= item.key. So the upper limit of this tombstone cannot be file-bounds-constrained
// to < item.key. But it is possible that item.key < smallestUserKey, in which
// case this tombstone should be ignored.
//
// Example 1:
// sstable bounds [c#8, g#12] containing a tombstone [b, i)#7, and key is c#6. The
// smallestUserKey is c, so we know the key is within the file bounds and the tombstone
// [b, i) covers it.
//
// Example 2:
// Same sstable bounds but key is b#10. The smallestUserKey is c, so the tombstone [b, i)
// does not cover this key.
//
// For a tombstone at the same level as the key, the file bounds are trivially satisfied.
if (l.smallestUserKey == nil || m.heap.cmp(l.smallestUserKey, item.key.UserKey) <= 0) &&
l.tombstone.Contains(m.heap.cmp, item.key.UserKey) {
if level < item.index {
// We could also do m.seekGE(..., level + 1). The levels from
// [level + 1, item.index) are already after item.key so seeking them may be
// wasteful.
// We can seek up to the min of largestUserKey and tombstone.End.
//
// Using example 1 above, we can seek to the smaller of g and i, which is g.
//
// Another example, where the sstable bounds are [c#8, i#InternalRangeDelSentinel],
// and the tombstone is [b, i)#8. Seeking to i is correct since it is seeking up to
// the exclusive bound of the tombstone. We do not need to look at
// isLargestKeyRangeDelSentinel.
//
// Progress argument: Since this file is at a higher level than item.key we know
// that the iterator in this file must be positioned within its bounds and at a key
// X > item.key (otherwise it would be the min of the heap). It is not
// possible for X.UserKey == item.key.UserKey, since it is incompatible with
// X > item.key (a lower version cannot be in a higher sstable), so it must be that
// X.UserKey > item.key.UserKey. Which means l.largestUserKey > item.key.UserKey.
// We also know that l.tombstone.End > item.key.UserKey. So the min of these,
// seekKey, computed below, is > item.key.UserKey, so the call to seekGE() will
// make forward progress.
seekKey := l.tombstone.End
if l.largestUserKey != nil && m.heap.cmp(l.largestUserKey, seekKey) < 0 {
seekKey = l.largestUserKey
}
// This seek is not directly due to a SeekGE call, so we don't
// know enough about the underlying iterator positions, and so
// we set trySeekUsingNext=false.
m.seekGE(seekKey, item.index, false /* trySeekUsingNext */)
return true
}
if l.tombstone.Covers(item.key.SeqNum()) {
m.nextEntry(item)
return true
}
}
}
return false
}
// Starting from the current entry, finds the first (next) entry that can be returned.
func (m *mergingIter) findNextEntry() (*InternalKey, []byte) {
for m.heap.len() > 0 && m.err == nil {
item := &m.heap.items[0]
if m.levels[item.index].isSyntheticIterBoundsKey {
break
}
m.addItemStats(item)
if m.isNextEntryDeleted(item) {
m.stats.PointsCoveredByRangeTombstones++
// For prefix iteration, stop if we are past the prefix. We could
// amortize the cost of this comparison, by doing it only after we
// have iterated in this for loop a few times. But unless we find
// a performance benefit to that, we do the simple thing and
// compare each time. Note that isNextEntryDeleted already did at
// least 4 key comparisons in order to return true, and
// additionally at least one heap comparison to step to the next
// entry.
if m.prefix != nil {
if n := m.split(item.key.UserKey); !bytes.Equal(m.prefix, item.key.UserKey[:n]) {
return nil, nil
}
}
continue
}
if item.key.Visible(m.snapshot) &&
(item.key.Kind() != InternalKeyKindRangeDelete || !m.elideRangeTombstones) {
return &item.key, item.value
}
m.nextEntry(item)
}
return nil, nil
}
// Steps to the prev entry. item is the current top item in the heap.
func (m *mergingIter) prevEntry(item *mergingIterItem) {
l := &m.levels[item.index]
oldTopLevel := item.index
oldRangeDelIter := l.rangeDelIter
if l.iterKey, l.iterValue = l.iter.Prev(); l.iterKey != nil {
item.key, item.value = *l.iterKey, l.iterValue
if m.heap.len() > 1 {
m.heap.fix(0)
}
if l.rangeDelIter != oldRangeDelIter && l.rangeDelIter != nil {
// The rangeDelIter changed which indicates that the l.iter moved to the
// previous sstable. We have to update the tombstone for oldTopLevel as
// well.
oldTopLevel--
}
} else {
m.err = l.iter.Error()
if m.err == nil {
m.heap.pop()
}
}
// The cached tombstones are only valid for the levels
// [0,oldTopLevel]. Updated the cached tombstones for any levels in the range
// [oldTopLevel+1,heap[0].index].
m.initMaxRangeDelIters(oldTopLevel)
}
// isPrevEntryDeleted() starts from the current entry (as the prev entry) and if it is deleted,
// moves the iterators backward as needed and returns true, else it returns false. item is the top
// item in the heap.
func (m *mergingIter) isPrevEntryDeleted(item *mergingIterItem) bool {
// Look for a range deletion tombstone containing item.key at higher
// levels (level < item.index). If we find such a range tombstone we know
// it deletes the key in the current level. Also look for a range
// deletion at the current level (level == item.index). If we find such a
// range deletion we need to check whether it is newer than the current
// entry.
for level := 0; level <= item.index; level++ {
l := &m.levels[level]
if l.rangeDelIter == nil || !l.tombstone.Valid() {
// If l.tombstone.Valid() is false, there are no further tombstones
// in the current sstable in the current (reverse) iteration
// direction.
continue
}
if m.heap.cmp(item.key.UserKey, l.tombstone.Start) < 0 {
// The current key is before the tombstone start key.
//
// NB: for the case that this l.rangeDelIter is provided by a levelIter we know that
// the levelIter must be positioned at a key < item.key. So it is sufficient to seek the
// current l.rangeDelIter (since any range del iterators that will be provided by the
// levelIter in the future cannot contain item.key). Also, it is it is possible that we
// will encounter parts of the range delete that should be ignored -- we handle that
// below.
l.tombstone = keyspan.SeekLE(m.heap.cmp, l.rangeDelIter, item.key.UserKey, m.snapshot)
}
if !l.tombstone.Valid() {
continue
}
// Reasoning for correctness of untruncated tombstone handling when the untruncated
// tombstone is at a higher level:
//
// The iterator corresponding to this tombstone is still in the heap so it must be
// positioned <= item.key. Which means the Smallest key bound of the sstable containing this
// tombstone is <= item.key. So the lower limit of this tombstone cannot have been
// file-bounds-constrained to > item.key. But it is possible that item.key >= Largest
// key bound of this sstable, in which case this tombstone should be ignored.
//
// Example 1:
// sstable bounds [c#8, g#12] containing a tombstone [b, i)#7, and key is f#6. The
// largestUserKey is g, so we know the key is within the file bounds and the tombstone
// [b, i) covers it.
//
// Example 2:
// Same sstable but the key is g#6. This cannot happen since the [b, i)#7 untruncated
// tombstone was involved in a compaction which must have had a file to the right of this
// sstable that is part of the same atomic compaction group for future compactions. That
// file must have bounds that cover g#6 and this levelIter must be at that file.
//
// Example 3:
// sstable bounds [c#8, g#RangeDelSentinel] containing [b, i)#7 and the key is g#10.
// This key is not deleted by this tombstone. We need to look at
// isLargestUserKeyRangeDelSentinel.
//
// For a tombstone at the same level as the key, the file bounds are trivially satisfied.
// Default to within bounds.
withinLargestSSTableBound := true
if l.largestUserKey != nil {
cmpResult := m.heap.cmp(l.largestUserKey, item.key.UserKey)
withinLargestSSTableBound = cmpResult > 0 || (cmpResult == 0 && !l.isLargestUserKeyRangeDelSentinel)
}
if withinLargestSSTableBound && l.tombstone.Contains(m.heap.cmp, item.key.UserKey) {
if level < item.index {
// We could also do m.seekLT(..., level + 1). The levels from
// [level + 1, item.index) are already before item.key so seeking them may be
// wasteful.
// We can seek up to the max of smallestUserKey and tombstone.Start.UserKey.
//
// Using example 1 above, we can seek to the larger of c and b, which is c.
//
// Progress argument: We know that the iterator in this file is positioned within
// its bounds and at a key X < item.key (otherwise it would be the max of the heap).
// So smallestUserKey <= item.key.UserKey and we already know that
// l.tombstone.Start.UserKey <= item.key.UserKey. So the seekKey computed below
// is <= item.key.UserKey, and since we do a seekLT() we will make backwards
// progress.
seekKey := l.tombstone.Start
if l.smallestUserKey != nil && m.heap.cmp(l.smallestUserKey, seekKey) > 0 {
seekKey = l.smallestUserKey
}
m.seekLT(seekKey, item.index)
return true
}
if l.tombstone.Covers(item.key.SeqNum()) {
m.prevEntry(item)
return true
}
}
}
return false
}
// Starting from the current entry, finds the first (prev) entry that can be returned.
func (m *mergingIter) findPrevEntry() (*InternalKey, []byte) {
for m.heap.len() > 0 && m.err == nil {
item := &m.heap.items[0]
if m.levels[item.index].isSyntheticIterBoundsKey {
break
}
m.addItemStats(item)
if m.isPrevEntryDeleted(item) {
m.stats.PointsCoveredByRangeTombstones++
continue
}
if item.key.Visible(m.snapshot) &&
(item.key.Kind() != InternalKeyKindRangeDelete || !m.elideRangeTombstones) {
return &item.key, item.value
}
m.prevEntry(item)
}
return nil, nil
}
// Seeks levels >= level to >= key. Additionally uses range tombstones to extend the seeks.
func (m *mergingIter) seekGE(key []byte, level int, trySeekUsingNext bool) {
// When seeking, we can use tombstones to adjust the key we seek to on each
// level. Consider the series of range tombstones:
//
// 1: a---e
// 2: d---h
// 3: g---k
// 4: j---n
// 5: m---q
//
// If we SeekGE("b") we also find the tombstone "b" resides within in the
// first level which is [a,e). Regardless of whether this tombstone deletes
// "b" in that level, we know it deletes "b" in all lower levels, so we
// adjust the search key in the next level to the tombstone end key "e". We
// then SeekGE("e") in the second level and find the corresponding tombstone
// [d,h). This process continues and we end up seeking for "h" in the 3rd
// level, "k" in the 4th level and "n" in the last level.
//
// TODO(peter,rangedel): In addition to the above we can delay seeking a
// level (and any lower levels) when the current iterator position is
// contained within a range tombstone at a higher level.
for ; level < len(m.levels); level++ {
if invariants.Enabled && m.lower != nil && m.heap.cmp(key, m.lower) < 0 {
m.logger.Fatalf("mergingIter: lower bound violation: %s < %s\n%s", key, m.lower, debug.Stack())
}
l := &m.levels[level]
if m.prefix != nil {
l.iterKey, l.iterValue = l.iter.SeekPrefixGE(m.prefix, key, trySeekUsingNext)
} else {
l.iterKey, l.iterValue = l.iter.SeekGE(key, trySeekUsingNext)
}
if rangeDelIter := l.rangeDelIter; rangeDelIter != nil {
// The level has a range-del iterator. Find the tombstone containing
// the search key.
//
// For untruncated tombstones that are possibly file-bounds-constrained, we are using a
// levelIter which will set smallestUserKey and largestUserKey. Since the levelIter
// is at this file we know that largestUserKey >= key, so we know that the
// tombstone we find cannot be file-bounds-constrained in its upper bound to something < key.
// We do need to compare with smallestUserKey to ensure that the tombstone is not
// file-bounds-constrained in its lower bound.
//
// See the detailed comments in isNextEntryDeleted() on why similar containment and
// seeking logic is correct. The subtle difference here is that key is a user key,
// so we can have a sstable with bounds [c#8, i#InternalRangeDelSentinel], and the
// tombstone is [b, k)#8 and the seek key is i: levelIter.SeekGE(i) will move past
// this sstable since it realizes the largest key is a InternalRangeDelSentinel.
l.tombstone = keyspan.SeekGE(m.heap.cmp, rangeDelIter, key, m.snapshot)
if !l.tombstone.Empty() && l.tombstone.Contains(m.heap.cmp, key) &&
(l.smallestUserKey == nil || m.heap.cmp(l.smallestUserKey, key) <= 0) {
// NB: Based on the comment above l.largestUserKey >= key, and based on the
// containment condition tombstone.End > key, so the assignment to key results
// in a monotonically non-decreasing key across iterations of this loop.
//
// The adjustment of key here can only move it to a larger key. Since
// the caller of seekGE guaranteed that the original key was greater
// than or equal to m.lower, the new key will continue to be greater
// than or equal to m.lower.
if l.largestUserKey != nil &&
m.heap.cmp(l.largestUserKey, l.tombstone.End) < 0 {
// Truncate the tombstone for seeking purposes. Note that this can over-truncate
// but that is harmless for this seek optimization.
key = l.largestUserKey
} else {
key = l.tombstone.End
}
}
}
}
m.initMinHeap()
}
func (m *mergingIter) String() string {
return "merging"
}
// SeekGE implements base.InternalIterator.SeekGE. Note that SeekGE only checks
// the upper bound. It is up to the caller to ensure that key is greater than
// or equal to the lower bound.
func (m *mergingIter) SeekGE(key []byte, trySeekUsingNext bool) (*InternalKey, []byte) {
m.err = nil // clear cached iteration error
m.prefix = nil
m.seekGE(key, 0 /* start level */, trySeekUsingNext)
return m.findNextEntry()
}
// SeekPrefixGE implements base.InternalIterator.SeekPrefixGE. Note that
// SeekPrefixGE only checks the upper bound. It is up to the caller to ensure
// that key is greater than or equal to the lower bound.
func (m *mergingIter) SeekPrefixGE(
prefix, key []byte, trySeekUsingNext bool,
) (*base.InternalKey, []byte) {
m.err = nil // clear cached iteration error
m.prefix = prefix
m.seekGE(key, 0 /* start level */, trySeekUsingNext)
return m.findNextEntry()
}
// Seeks levels >= level to < key. Additionally uses range tombstones to extend the seeks.
func (m *mergingIter) seekLT(key []byte, level int) {
// See the comment in seekGE regarding using tombstones to adjust the seek
// target per level.
m.prefix = nil
for ; level < len(m.levels); level++ {
if invariants.Enabled && m.upper != nil && m.heap.cmp(key, m.upper) > 0 {
m.logger.Fatalf("mergingIter: upper bound violation: %s > %s\n%s", key, m.upper, debug.Stack())
}
l := &m.levels[level]
l.iterKey, l.iterValue = l.iter.SeekLT(key)
if rangeDelIter := l.rangeDelIter; rangeDelIter != nil {
// The level has a range-del iterator. Find the tombstone containing
// the search key.
//
// For untruncated tombstones that are possibly file-bounds-constrained we are using a
// levelIter which will set smallestUserKey and largestUserKey. Since the levelIter
// is at this file we know that smallestUserKey <= key, so we know that the
// tombstone we find cannot be file-bounds-constrained in its lower bound to something > key.
// We do need to compare with largestUserKey to ensure that the tombstone is not
// file-bounds-constrained in its upper bound.
//
// See the detailed comments in isPrevEntryDeleted() on why similar containment and
// seeking logic is correct.
// Default to within bounds.
withinLargestSSTableBound := true
if l.largestUserKey != nil {
cmpResult := m.heap.cmp(l.largestUserKey, key)
withinLargestSSTableBound = cmpResult > 0 || (cmpResult == 0 && !l.isLargestUserKeyRangeDelSentinel)
}
l.tombstone = keyspan.SeekLE(m.heap.cmp, rangeDelIter, key, m.snapshot)
if !l.tombstone.Empty() && l.tombstone.Contains(m.heap.cmp, key) && withinLargestSSTableBound {
// NB: Based on the comment above l.smallestUserKey <= key, and based
// on the containment condition tombstone.Start.UserKey <= key, so the
// assignment to key results in a monotonically non-increasing key
// across iterations of this loop.
//
// The adjustment of key here can only move it to a smaller key. Since
// the caller of seekLT guaranteed that the original key was less than
// or equal to m.upper, the new key will continue to be less than or
// equal to m.upper.
if l.smallestUserKey != nil &&
m.heap.cmp(l.smallestUserKey, l.tombstone.Start) >= 0 {
// Truncate the tombstone for seeking purposes. Note that this can over-truncate
// but that is harmless for this seek optimization.
key = l.smallestUserKey
} else {
key = l.tombstone.Start
}
}
}
}
m.initMaxHeap()
}
// SeekLT implements base.InternalIterator.SeekLT. Note that SeekLT only checks
// the lower bound. It is up to the caller to ensure that key is less than the
// upper bound.
func (m *mergingIter) SeekLT(key []byte) (*InternalKey, []byte) {
m.err = nil // clear cached iteration error
m.prefix = nil
m.seekLT(key, 0 /* start level */)
return m.findPrevEntry()
}
// First implements base.InternalIterator.First. Note that First only checks
// the upper bound. It is up to the caller to ensure that key is greater than
// or equal to the lower bound (e.g. via a call to SeekGE(lower)).
func (m *mergingIter) First() (*InternalKey, []byte) {
m.err = nil // clear cached iteration error