You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Triton Information
What version of Triton are you using?
nvcr.io/nvidia/tritonserver:23.04-py3
Are you using the Triton container or did you build it yourself?
no To Reproduce
Steps to reproduce the behavior.
yolo export model=best.pt format=onnx opset=15
yolo export model=best.pt format=torchscripts
nano config.pbtxt
docker run --gpus all -it --rm -v /data/triton/models:/models -p 8000:8000 -p 8001:8001 -p 8002:8002 nvcr.io/nvidia/tritonserver:23.04-py3 tritonserver --model-repository=/models --log-verbose=1
Describe the models (framework, inputs, outputs), ideally include the model configuration file (if using an ensemble include the model configuration file for that as well).
Description
yolov8n.pt模型转torchscripts和onnx,在triton server或Deepytorch Inference上推理,精度下降
Triton Information
What version of Triton are you using?
nvcr.io/nvidia/tritonserver:23.04-py3
Are you using the Triton container or did you build it yourself?
no
To Reproduce
Steps to reproduce the behavior.
docker run --gpus all -it --rm -v /data/triton/models:/models -p 8000:8000 -p 8001:8001 -p 8002:8002 nvcr.io/nvidia/tritonserver:23.04-py3 tritonserver --model-repository=/models --log-verbose=1
boxes: tensor([[ 7.4102, 36.6875, 14.7109, 73.1250], [ 15.0469, 26.4531, 29.8750, 52.8438], [ 20.6875, 15.2891, 40.5000, 30.6094], ..., [472.5000, 575.0000, 348.7500, 143.5000], [503.0000, 568.0000, 326.0000, 178.0000], [545.0000, 586.5000, 323.2500, 224.0000]], device='cuda:0') scores: tensor([0., 0., 0., ..., 0., 0., 0.], device='cuda:0') class_ids: tensor([0, 0, 0, ..., 0, 0, 0], device='cuda:0') class_ids>0.7: tensor([], device='cuda:0', dtype=torch.int64)
_ @why this class_ids is 0?_
Describe the models (framework, inputs, outputs), ideally include the model configuration file (if using an ensemble include the model configuration file for that as well).
yolov10_triton.py
`import io
import os
from io import BytesIO
import cv2
import torch
import torchvision
from PIL import Image
from tritonclient.grpc import InferenceServerClient, InferInput
from tritonclient.utils import *
def getIou(box1, box2, inter_area):
box1_area = box1[2] * box1[3]
box2_area = box2[2] * box2[3]
union = box1_area + box2_area - inter_area
iou = inter_area / union
return iou
def getInter(box1, box2):
box1_x1, box1_y1, box1_x2, box1_y2 = box1[0] - box1[2] / 2, box1[1] - box1[3] / 2,
box1[0] + box1[2] / 2, box1[1] + box1[3] / 2
box2_x1, box2_y1, box2_x2, box2_y2 = box2[0] - box2[2] / 2, box2[1] - box1[3] / 2,
box2[0] + box2[2] / 2, box2[1] + box2[3] / 2
if box1_x1 > box2_x2 or box1_x2 < box2_x1:
return 0
if box1_y1 > box2_y2 or box1_y2 < box2_y1:
return 0
x_list = [box1_x1, box1_x2, box2_x1, box2_x2]
x_list = np.sort(x_list)
x_inter = x_list[2] - x_list[1]
y_list = [box1_y1, box1_y2, box2_y1, box2_y2]
y_list = np.sort(y_list)
y_inter = y_list[2] - y_list[1]
inter = x_inter * y_inter
return inter
class TritonInferer:
def init(self, model_name, server_url='localhost:8001'):
self.img_src = None
self.img = None
self.triton_client = InferenceServerClient(url=server_url, verbose=False)
self.model_name = model_name
self.input_name = 'images'
self.output_name = 'output0'
self.image_size = 640
self.conf_thres = 0.5
self.iou_thres = 0.5
bottle_name = 'v10_bottle5_240925'
bottle_plus_name = 'v10_bottle_plus11_240925'
yolov8_wt = str(r"D:\workspace_py\pxys-model-rest\weights\bottle{}.pt".format(bottle_name))
yolov8_plus_wt = str(r"D:\workspace_py\pxys-model-rest\weights\bottle{}.pt".format(bottle_plus_name))
triton_inferer = TritonInferer(model_name='bottle_plus_onnx')
image_folder = r'E:\data\数据库\9月瓶\新品由柑汁\obj_train_data\images'
for filename in os.listdir(image_folder):
if filename.endswith('.jpg') or filename.endswith('.png'):
image_path = os.path.join(image_folder, filename)
`
Expected behavior
A clear and concise description of what you expected to happen.
expected not 0
The text was updated successfully, but these errors were encountered: