Skip to content

troy-west/apache-kafka-vendor-tools

Repository files navigation

Exploring Apache Kafka vendor tooling: KSQL, Kafka connect

References

Goals

  • Use the KSQL DSL to perform streaming queries.
  • Use Kafka Connect to export CSV results from KSQL to a file.

Running Kafka, KSQL, and the Schema Registry

Shutdown any kafka brokers that you may have run from previous exercise, then follow the steps below.

  1. Bootstrap a 3-node Kafka cluster, the KSQL server, and the Schema Registry with the following command:
docker-compose up

Creating and populating topics with the CLI tools

  1. In a new terminal, start the Kafka CLI tools, as follows. You will be dropped into a bash shell from where you can interact with the Kafka brokers:
docker-compose -f docker-compose.tools.yml run kafka-tools
  1. Create a new topic radio-logs with the following command:
./bin/kafka-topics.sh --bootstrap-server kafka-1:19092 --create --topic radio-logs --partitions 12 --replication-factor 3
  1. Populate the radio-logs topic by using the code from the coding section of the Apache Kafka workshop.

Starting KSQL and querying Kafka topics via tables and streams

  1. In a new terminal, start the KSQL CLI tool:
docker-compose -f docker-compose.ksql.yml run ksql

You should see the following:

                  ===========================================
                  =        _  __ _____  ____  _             =
                  =       | |/ // ____|/ __ \| |            =
                  =       | ' /| (___ | |  | | |            =
                  =       |  <  \___ \| |  | | |            =
                  =       | . \ ____) | |__| | |____        =
                  =       |_|\_\_____/ \___\_\______|       =
                  =                                         =
                  =  Streaming SQL Engine for Apache Kafka® =
                  ===========================================

Copyright 2017-2018 Confluent Inc.

CLI v5.2.1, Server v5.2.1 located at http://ksql-server:8088

Having trouble? Type 'help' (case-insensitive) for a rundown of how things work!

ksql>
  1. At the KSQL command prompt, enter the following command to list the existing topics:
list topics;

You will see something like the following:

 Kafka Topic | Registered | Partitions | Partition Replicas | Consumers | ConsumerGroups
-----------------------------------------------------------------------------------------
 _schemas    | false      | 1          | 3                  | 0         | 0
 radio-logs  | false      | 12         | 3                  | 0         | 0
-----------------------------------------------------------------------------------------
  1. View the messsages on the radio-logs topic:
print 'radio-logs' from beginning LIMIT 10;

You will see something like the following:

Format:JSON
{"ROWTIME":1557380525600,"ROWKEY":"353","time":1557125670796,"type":"MOR","name":"353","long":41,"lat":13,"content":[".----"]}
{"ROWTIME":1557380525604,"ROWKEY":"353","time":1557125670821,"type":"MOR","name":"353","long":41,"lat":13,"content":[".----"]}
{"ROWTIME":1557380525605,"ROWKEY":"353","time":1557125670846,"type":"MOR","name":"353","long":41,"lat":13,"content":[".----"]}
{"ROWTIME":1557380525607,"ROWKEY":"095","time":1557125670915,"type":"MOR","name":"095","long":-87,"lat":-29,"content":[".----"]}
{"ROWTIME":1557380525608,"ROWKEY":"095","time":1557125670940,"type":"MOR","name":"095","long":-87,"lat":-29,"content":[".----"]}
{"ROWTIME":1557380525609,"ROWKEY":"095","time":1557125670965,"type":"MOR","name":"095","long":-87,"lat":-29,"content":[".----"]}
{"ROWTIME":1557380525612,"ROWKEY":"032","time":1557125671068,"type":"MOR","name":"032","long":-119,"lat":-39,"content":[".----"]}
{"ROWTIME":1557380525613,"ROWKEY":"032","time":1557125671093,"type":"MOR","name":"032","long":-119,"lat":-39,"content":[".----"]}
{"ROWTIME":1557380525615,"ROWKEY":"032","time":1557125671118,"type":"MOR","name":"032","long":-119,"lat":-39,"content":[".----"]}
{"ROWTIME":1557380525616,"ROWKEY":"122","time":1557125671157,"type":"MOR","name":"122","long":-74,"lat":-24,"content":[".----"]}

Hit Ctrl+c to get back to the prompt.

  1. Create a KSQL stream around the radio-logins topic:
CREATE STREAM radio_logs (time BIGINT, type VARCHAR, name VARCHAR, long VARCHAR, lat VARCHAR, content ARRAY<VARCHAR>)
  WITH (KAFKA_TOPIC='radio-logs', VALUE_FORMAT='JSON', KEY='name', TIMESTAMP='time');
  1. List the existing KSQL streams:
show streams;

You should see the following:

 Stream Name | Kafka Topic | Format
------------------------------------
 RADIO_LOGS  | radio-logs  | JSON
------------------------------------
  1. View the details of the radio_logs stream:
describe radio_logs;

You should see the following:

Name                 : RADIO_LOGS
 Field   | Type
-------------------------------------
 ROWTIME | BIGINT           (system)
 ROWKEY  | VARCHAR(STRING)  (system)
 TIME    | BIGINT
 TYPE    | VARCHAR(STRING)
 NAME    | VARCHAR(STRING)
 LONG    | VARCHAR(STRING)
 LAT     | VARCHAR(STRING)
 CONTENT | ARRAY<VARCHAR(STRING)>
-------------------------------------
  1. View the content in the radio_logs stream, beginning with the earliest entry. The query can take a little time to return the initial results:
SET 'auto.offset.reset' = 'earliest';
SELECT * from radio_logs LIMIT 10;

The earliest setting tells KSQL that every query in this KSQL session should begin from the earliest offset on each topic, table, and stream.

You should see something like the following:

1557125670921 | 040 | 1557125670921 | GER | 040 | -115 | -38 | [eins]
1557125671114 | 485 | 1557125671114 | MOR | 485 | 107 | 35 | [.----]
1557125670806 | 344 | 1557125670806 | MOR | 344 | 37 | 12 | [.----]
1557125670781 | 185 | 1557125670781 | MOR | 185 | -42 | -14 | [.----]
1557125670946 | 040 | 1557125670946 | GER | 040 | -115 | -38 | [eins]
1557125670971 | 040 | 1557125670971 | GER | 040 | -115 | -38 | [eins]
1557125671223 | 502 | 1557125671223 | GER | 502 | 116 | 38 | [eins]
1557125671248 | 502 | 1557125671248 | GER | 502 | 116 | 38 | [eins]
1557125671273 | 502 | 1557125671273 | GER | 502 | 116 | 38 | [eins]
1557125671868 | 477 | 1557125671868 | ENG | 477 | 103 | 34 | [one]

Press Ctrl+c to exit the query.

  1. Now, let's search for messages coming from a particular radio station:
SELECT * FROM radio_logs WHERE type='ENG' and name='324' LIMIT 10;

We should get multiple results, as follows:

1557125672954 | 324 | 1557125672954 | ENG | 324 | 27 | 9 | [one]
1557125672979 | 324 | 1557125672979 | ENG | 324 | 27 | 9 | [one]
1557125673004 | 324 | 1557125673004 | ENG | 324 | 27 | 9 | [one]
1557125680792 | 324 | 1557125680792 | ENG | 324 | 27 | 9 | [one]
1557125680817 | 324 | 1557125680817 | ENG | 324 | 27 | 9 | [one]
1557125680842 | 324 | 1557125680842 | ENG | 324 | 27 | 9 | [one]
1557125695496 | 324 | 1557125695496 | ENG | 324 | 27 | 9 | [one]
1557125695521 | 324 | 1557125695521 | ENG | 324 | 27 | 9 | [one]
1557125695546 | 324 | 1557125695546 | ENG | 324 | 27 | 9 | [one]
1557125705652 | 324 | 1557125705652 | ENG | 324 | 27 | 9 | [one]
Limit Reached
  1. Now, limit the query to only those with content having at least 3 items:
select * from radio_logs WHERE type='ENG' and name='324' and content[2] IS NOT NULL limit 10;

After a while, you should see something like the following:

1557132917575 | 324 | 1557132917575 | ENG | 324 | 27 | 9 | [one, zero, zero]
1557132923187 | 324 | 1557132923187 | ENG | 324 | 27 | 9 | [one, zero, zero]
Limit Reached
  1. We can limit it even further to a specific timestamp:
select * from radio_logs WHERE type='ENG' and name='324' and content[2] IS NOT NULL AND time = 1557132923187 limit 10;

Resulting in:

1557132923187 | 324 | 1557132923187 | ENG | 324 | 27 | 9 | [one, zero, zero]
  1. We can count how many messages each radio station is sending each minute:
SELECT CAST(windowStart() AS BIGINT), type, name, count(*)
    FROM radio_logs
    WINDOW TUMBLING (SIZE 1 MINUTE)
    GROUP BY type, name LIMIT 10;

You should see something like the following:

1557125640000 | MOR | 407 | 9
1557125640000 | GER | 028 | 9
1557125640000 | MOR | 437 | 9
1557125640000 | GER | 169 | 9
1557125640000 | ENG | 522 | 9
1557125640000 | ENG | 261 | 9
1557125640000 | ENG | 507 | 9
1557125640000 | GER | 178 | 9
1557125640000 | GER | 064 | 9
1557125640000 | ENG | 279 | 9
  1. From the select, create a table from this query, so that we can then export this to a csv file:
CREATE TABLE radio_log_count
  WITH (KAFKA_TOPIC='radio_log_count', VALUE_FORMAT = 'DELIMITED')
  AS SELECT CAST(windowStart() AS BIGINT), type, name, count(*)
        FROM radio_logs
        WINDOW TUMBLING (SIZE 1 MINUTE)
        GROUP BY type, name;

Creating a table with AS SELECT and KAFKA_TOPIC will allow us to send the table to a topic.

  1. Now, list the topics managed by Kafka:
list topics;

You should see the following. Notice the radio_log_count topic that has been created:

 Kafka Topic     | Registered | Partitions | Partition Replicas | Consumers | ConsumerGroups
---------------------------------------------------------------------------------------------
 _schemas        | false      | 1          | 3                  | 0         | 0
 radio-logs      | true       | 12         | 3                  | 24        | 2
 radio_log_count | true       | 4          | 1                  | 4         | 1
---------------------------------------------------------------------------------------------

Also notice that a default value has been assigned to the partition count.

Exporting Kafka topics using Kafka Connect

  1. From the kafka-tools cli, start Kafka Connect in the background:
./bin/connect-standalone.sh \
   /root/data/connect-standalone.properties \
   /root/data/connect-file-sink-csv.properties &> kafka-connect-logs.txt &
  1. A new file radio_log_count.csv should be created and populated with the results of our radio_log_count table. Run the following to view its content:
cat radio_log_count.csv

You should see something like the following:

1557134280000,GER,268,18
1557134280000,MOR,050,18
1557134280000,MOR,251,18
1557134280000,MOR,524,18
1557134340000,GER,268,9
1557134340000,MOR,050,9
1557134340000,MOR,251,12
1557134340000,MOR,524,12

Troubleshooting

Windows

Docker

If you are having problems with docker similar to the following error messages, try restarting docker:

driver failed programming external connectivity on endpoint

or,

input/output error

About

AK3W: Apache Kafka Workshop KSQL & Kafka Connect

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published