Skip to content

Latest commit

 

History

History
70 lines (38 loc) · 1.55 KB

README.md

File metadata and controls

70 lines (38 loc) · 1.55 KB

ml-training-pipeline

This repository provides a comprehensive template for the management of reproducible pipelines for machine learning training in the context of audio. The template is utilizing DVC (data version control) and is adjusted for experiments on the Remote SLURM-Cluster HPC cluster of the Technical University of Berlin.

Features

Install and Setup

git clone https://github.com/tu-studio/dataset-pipeline-template

Create and setup a virtual environment inside the repository. If you chose a different name than myenv make sure to add the directory name of your venv to the .gitignore.

cd ml-training-pipeline

python3 -m venv venv

echo venv/ >> .gitignore

source venv/bin/activate

pip install -r requirements.txt

Initiliase a dvc repository.

dvc init

Add a WebDAV server as remote storage to your dvc repository.

dvc remote add -d myremote webdavs://tubcloud.tu-berlin.de/remote.php/dav/files/cf531c5e-2043-103b-8745-111da40a61ee/DVC

Add your username and password for server acces to a private config file (will be ignored by git).

dvc remote modify --local myremote user 'yourusername'

dvc remote modify --local myremote password 'yourpassword'

dvc remote modify myremote ask_password true

Add the raw data folder to the dvc repository.

dvc add data/raw

Usage

Contributors

License