-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuicksort.f90
241 lines (216 loc) · 5.77 KB
/
Quicksort.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
! Recursive Fortran 95 quicksort routine
! sorts real numbers into ascending numerical order
! Author: Juli Rew, SCD Consulting ([email protected]), 9/03
! Based on algorithm from Cormen et al., Introduction to Algorithms,
! 1997 printing
! Made F conformant by Walt Brainerd
!
!Updated 2016 Tue
!The RealQsort now uses real*8 instead of real.
!
! Dec 2016 KRA, added integer version
!
module mQuickSort
implicit none
public :: RealQsortC
private :: RealPartition
public :: IntQsortC
private :: IntPartition
interface IntPartition
module procedure IntPartition_real,IntPartition_complex,IntPartition_int
end interface
interface IntQsortC
module procedure IntQsortC_complex, IntQsortC_real, IntQsortC_int
end interface
contains
recursive subroutine RealQsortC(A)
real*8, intent(in out), dimension(:) :: A
integer :: iq
if(size(A) > 1) then
call RealPartition(A, iq)
call RealQsortC(A(:iq-1))
call RealQsortC(A(iq:))
endif
end subroutine RealQsortC
subroutine RealPartition(A, marker)
real*8, intent(in out), dimension(:) :: A
integer, intent(out) :: marker
integer :: i, j
real*8 :: temp
real*8 :: x ! pivot point
x = A(1)
i= 0
j= size(A) + 1
do
j = j-1
do
if (A(j) <= x) exit
j = j-1
end do
i = i+1
do
if (A(i) >= x) exit
i = i+1
end do
if (i < j) then
! exchange A(i) and A(j)
temp = A(i)
A(i) = A(j)
A(j) = temp
elseif (i == j) then
marker = i+1
return
else
marker = i
return
endif
end do
end subroutine RealPartition
recursive subroutine IntQsortC_int(SortInts,Secondarys)
integer, intent(inout), dimension(:) :: SortInts
integer, intent(inout), dimension(:) :: Secondarys
integer :: iq
if(size(SortInts) > 1) then
call IntPartition(SortInts,Secondarys, iq)
call IntQsortC(SortInts(:iq-1),Secondarys(:iq-1))
call IntQsortC(SortInts(iq:),Secondarys(iq:))
endif
end subroutine IntQsortC_int
recursive subroutine IntQsortC_real(SortInts,Secondarys)
integer, intent(inout), dimension(:) :: SortInts
real*8, intent(inout), dimension(:) :: Secondarys
integer :: iq
if(size(SortInts) > 1) then
call IntPartition(SortInts,Secondarys, iq)
call IntQsortC(SortInts(:iq-1),Secondarys(:iq-1))
call IntQsortC(SortInts(iq:),Secondarys(iq:))
endif
end subroutine IntQsortC_real
recursive subroutine IntQsortC_complex(SortInts,Secondarys)
integer, intent(inout), dimension(:) :: SortInts
complex*16, intent(inout), dimension(:) :: Secondarys
integer :: iq
if(size(SortInts) > 1) then
call IntPartition(SortInts,Secondarys, iq)
call IntQsortC(SortInts(:iq-1),Secondarys(:iq-1))
call IntQsortC(SortInts(iq:),Secondarys(iq:))
endif
end subroutine IntQsortC_complex
subroutine IntPartition_int(SortInts, Secondarys,marker)
integer, intent(inout), dimension(:) :: SortInts
integer, intent(inout), dimension(:) :: Secondarys
integer, intent(out) :: marker
integer :: i, j
integer :: temp
real*8 :: rtemp
integer :: x ! pivot point
x = SortInts(1)
i= 0
j= size(SortInts) + 1
do
j = j-1
do
if (SortInts(j) <= x) exit
j = j-1
end do
i = i+1
do
if (SortInts(i) >= x) exit
i = i+1
end do
if (i < j) then
! exchange A(i) and A(j)
temp = SortInts(i)
SortInts(i) = SortInts(j)
SortInts(j) = temp
rtemp=Secondarys(i)
Secondarys(i)=Secondarys(j)
Secondarys(j)=rtemp
elseif (i == j) then
marker = i+1
return
else
marker = i
return
endif
end do
end subroutine IntPartition_int
subroutine IntPartition_real(SortInts, Secondarys,marker)
integer, intent(inout), dimension(:) :: SortInts
real*8, intent(inout), dimension(:) :: Secondarys
integer, intent(out) :: marker
integer :: i, j
integer :: temp
real*8 :: rtemp
integer :: x ! pivot point
x = SortInts(1)
i= 0
j= size(SortInts) + 1
do
j = j-1
do
if (SortInts(j) <= x) exit
j = j-1
end do
i = i+1
do
if (SortInts(i) >= x) exit
i = i+1
end do
if (i < j) then
! exchange A(i) and A(j)
temp = SortInts(i)
SortInts(i) = SortInts(j)
SortInts(j) = temp
rtemp=Secondarys(i)
Secondarys(i)=Secondarys(j)
Secondarys(j)=rtemp
elseif (i == j) then
marker = i+1
return
else
marker = i
return
endif
end do
end subroutine IntPartition_real
subroutine IntPartition_complex(SortInts, Secondarys,marker)
integer, intent(inout), dimension(:) :: SortInts
complex*16, intent(inout), dimension(:) :: Secondarys
integer, intent(out) :: marker
integer :: i, j
integer :: temp
complex*16 :: rtemp
integer :: x ! pivot point
x = SortInts(1)
i= 0
j= size(SortInts) + 1
do
j = j-1
do
if (SortInts(j) <= x) exit
j = j-1
end do
i = i+1
do
if (SortInts(i) >= x) exit
i = i+1
end do
if (i < j) then
! exchange A(i) and A(j)
temp = SortInts(i)
SortInts(i) = SortInts(j)
SortInts(j) = temp
rtemp=Secondarys(i)
Secondarys(i)=Secondarys(j)
Secondarys(j)=rtemp
elseif (i == j) then
marker = i+1
return
else
marker = i
return
endif
end do
end subroutine IntPartition_complex
end module mQuickSort