-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrenderer.py
146 lines (124 loc) · 7.46 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import numpy as np
import torch
from mesh import load_first_k_eigenfunctions, ray_tracing, get_ray_mesh_intersector, ray_tracing_xyz, load_mesh
from utils import to_device, load_trained_model, batchify_dict_data
def make_renderer_with_trained_model(config, device="cuda"):
# Load mesh
mesh = load_mesh(config["data"]["mesh_path"])
# Load features
feature_strategy = config["model"].get("feature_strategy", "efuncs")
if feature_strategy == "efuncs":
# Load eigenfunctions
efuncs = load_first_k_eigenfunctions(config["data"]["eigenfunctions_path"],
config["model"].get("k"),
rescale_strategy=config["data"].get("rescale_strategy",
"standard"),
embed_strategy=config["data"].get("embed_strategy"),
eigenvalues_path=config["data"].get("eigenvalues_path"))
else:
efuncs = None
# Load trained model
weights_path = os.path.join(config["training"]["out_dir"], "model.pt")
model = load_trained_model(config["model"], weights_path, device, mesh=mesh)
return Renderer(model, mesh, eigenfunctions=efuncs, feature_strategy=feature_strategy,
device=device, H=config["data"]["img_height"], W=config["data"]["img_width"])
class Renderer:
def __init__(self, model, mesh, eigenfunctions=None, feature_strategy="efuncs", background="white", device="cpu", *, H, W):
self.model = model
self.mesh = mesh
self.ray_mesh_intersector = get_ray_mesh_intersector(self.mesh)
self.feature_strategy = feature_strategy
if self.feature_strategy == "efuncs":
self.features = eigenfunctions
elif self.feature_strategy in ("ff", "rff", "xyz"):
self.features = torch.from_numpy(mesh.vertices).to(dtype=torch.float32)
else:
raise ValueError(f"Unknown feature strategy: {self.feature_strategy}")
self.H = H
self.W = W
self.background = background
self.device = device
def set_height(self, height):
self.H = height
def set_width(self, width):
self.W = width
def apply_mesh_transform(self, transform):
self.mesh.apply_transform(transform)
self.ray_mesh_intersector = get_ray_mesh_intersector(self.mesh)
@torch.no_grad()
def render(self, camCv2world, K, obj_mask_1d=None, eval_render=False, distortion_coeffs=None, distortion_type=None):
assert obj_mask_1d is None or obj_mask_1d.size()[0] == self.H*self.W
self.model.eval()
if self.feature_strategy == "efuncs":
eigenfunction_vector_values, hit_ray_idxs, unit_ray_dirs, face_idxs = ray_tracing(self.ray_mesh_intersector,
self.mesh,
self.features,
camCv2world,
K,
obj_mask_1d=obj_mask_1d,
H=self.H,
W=self.W,
batched=True,
distortion_coeffs=distortion_coeffs,
distortion_type=distortion_type)
assert eigenfunction_vector_values.dtype == torch.float32
data = {
"eigenfunctions": eigenfunction_vector_values,
"unit_ray_dirs": unit_ray_dirs,
"hit_face_idxs": face_idxs,
}
num_rays = eigenfunction_vector_values.shape[0]
elif self.feature_strategy in ("ff", "rff", "xyz"):
hit_points_xyz, hit_ray_idxs, unit_ray_dirs, face_idxs = ray_tracing_xyz(self.ray_mesh_intersector,
self.mesh,
self.features,
camCv2world,
K,
obj_mask_1d=obj_mask_1d,
H=self.H,
W=self.W,
batched=True,
distortion_coeffs=distortion_coeffs,
distortion_type=distortion_type)
data = {
"xyz": hit_points_xyz,
"unit_ray_dirs": unit_ray_dirs,
"hit_face_idxs": face_idxs
}
num_rays = hit_points_xyz.shape[0]
else:
raise ValueError(f"Unknown feature strategy: {self.feature_strategy}")
assert num_rays > 0
# Inference in batches to support rendering large views
total_pred_rgbs = []
batch_size = 1 << 15
for batch in batchify_dict_data(data, num_rays, batch_size):
batch = to_device(batch, device=self.device)
pred_rgbs = self.model(batch).cpu()
total_pred_rgbs.append(pred_rgbs)
pred_rgbs = torch.concat(total_pred_rgbs, dim=0)
# We now need to bring the predicted RGB colors into the correct ordering again
# since the ray-mesh intersection does not preserve ordering
assert obj_mask_1d is None or obj_mask_1d.dtype == torch.bool
N = self.H * self.W if obj_mask_1d is None else obj_mask_1d.sum()
if self.background == "white":
img = torch.ones((N, 3), device="cpu", dtype=torch.float32)
else:
assert self.background == "black"
img = torch.zeros((N, 3), device="cpu", dtype=torch.float32)
img[hit_ray_idxs] = pred_rgbs
# If we only kept the object, then img does not have the correct resolution yet.
# Therefore, we must upscale it one more time taking the object mask into account.
if obj_mask_1d is not None:
M = self.H * self.W
if self.background == "white":
img_unmasked = torch.ones((M, 3), device="cpu", dtype=torch.float32)
else:
assert self.background == "black"
img_unmasked = torch.zeros((M, 3), device="cpu", dtype=torch.float32)
img_unmasked[obj_mask_1d] = img
img = img_unmasked
if eval_render:
return img.reshape(self.H, self.W, 3), hit_ray_idxs
return img.reshape(self.H, self.W, 3).numpy()