-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathML_smallBow.py
306 lines (249 loc) · 8.56 KB
/
ML_smallBow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import matplotlib.pyplot as plt
import csv, unicodedata, sys
from textblob import TextBlob
import pandas
import sklearn
import cPickle
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.svm import SVC, LinearSVC
from sklearn.metrics import classification_report, f1_score, accuracy_score, confusion_matrix
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold, cross_val_score, train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import learning_curve
from sklearn.linear_model import SGDClassifier
import sys,csv
csv.field_size_limit(sys.maxsize) #set size limit to maximum
papers = pandas.read_csv('./MLpapers_sentences.csv', delimiter=',', quotechar='|',
names=["paper", "label","paperName"])
#papers_origin = pandas.read_csv('./rawSentencesLabelCopy.csv', delimiter=',', quotechar='|',
# names=["paper", "label","paperName"])
def split_into_tokens(message):
message = unicode(message, 'utf8') # convert bytes into proper unicode
return TextBlob(message).words
def split_into_lemmas(message):
try:
message = message.encode('utf-8').lower()
except:
print type(message)
sys.exit()
words = TextBlob(message).words
# for each word, take its "base form" = lemma
return [word.lemma for word in words]
dataStc = []
for i in range(len(papers['paper'])):
if papers['label'][i] == 'Data':
dataStc.append(papers['paper'][i])
#######
count = 0
wordset = set()
tokens = set()
for sample in dataStc:
sample = split_into_lemmas(sample)
for word in sample:
if word.isdigit():
count += 1
elif len(word) <= 2:
wordset.add(word)
else:
tokens.add(word)
#print 'numbers: ', count
#print 'len 1 & 2:',len(wordset)
print 'len tokens', len(tokens)
#print ''
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(tokens)
#print 'bow vocabulary:', len(bow_transformer.vocabulary_)
#print 'type bow', type(bow_transformer)
wordstfidf = ' '.join([x for x in tokens])
paper1 = papers['paper'][1]
bow1 = bow_transformer.transform([paper1])
#print 'bow1:'
#print len(bow1.data)
#print len(bow1.indices)
#print ''
data = []
for i in range(len(papers['label'])):
if papers['label'][i] == 'Data':
data.append(papers['paper'][i])
papers_bow = bow_transformer.transform(papers['paper'])
freq = [0]*2691
print 'bow shape:',papers_bow.shape
'''
for i in range(len(bow1.indices)):
freq[int(bow1.indices[i])] += int(bow1.data[i])
for i in range(len(freq)):
if freq[i] != 0:
print i, ':', freq[i]
'''
tfidf_transformer = TfidfTransformer().fit(papers_bow)
tftest = tfidf_transformer.transform(wordstfidf)
#papers_tfidf = tfidf_transformer.transform(papers_bow)
#papers_bow = papers_tfidf
'''
count = 0
for i in range(len(papers['label'])):
if papers['label'][i] != 'Data':
continue
count += 1
bow = papers_bow[i]
for t in range(len(bow.indices)):
freq[int(bow.indices[t])] += float(bow.data[t])
print count
print freq[:10]
freqMap = {}
for i in range(len(freq)):
word = bow_transformer.get_feature_names()[i]
if freq[i] not in freqMap.keys():
freqMap[freq[i]] = [word]
else:
freqMap[freq[i]].append(word)
key = freqMap.keys()
key.sort()
key.reverse()
out = [['freq', 'words']]
for k in key:
out.append([k, ' '.join(freqMap[k])])
with open('wordTfidf.csv','wb') as cf:
wr = csv.writer(cf, delimiter = ',', quotechar='"')
wr.writerows(out)
'''
'''
papers_bow = bow_transformer.transform(papers['paper'])
tfidf_transformer = TfidfTransformer().fit(papers_bow)
papers_tfidf = tfidf_transformer.transform(papers_bow)
print 'tfidf type',type(papers_tfidf)
print 'papers_tfidf[1]:'
print len(papers_tfidf[1].data)
print len(papers_tfidf[1].indices)
data_tf = []
nondata_tf = []
print papers_tfidf.nnz
print papers_tfidf.shape
print len(papers['label'])
print 'tfidf 1:'
print papers_tfidf[1].data
print 'sum 1:', sum(papers_tfidf[1].data)
for i in range(len(papers['label'])):
if papers['label'][i] == 'Data':
data_tf.append(sum(papers_tfidf[i].data))
else:
nondata_tf.append(sum(papers_tfidf[i].data))
print len(data_tf)
print 'data_tf[1]:', data_tf[1]
print len(nondata_tf)
out = [['data', x] for x in data_tf] + [['non-data', x] for x in nondata_tf]
out = [['label','tfidf']]+out
with open('tfidf_sentences.csv','wb') as cf:
wr = csv.writer(cf, delimiter = ',', quotechar='"')
wr.writerows(out)
'''
'''
#bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(papers['paper'])
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(split_into_tokens(dataStc))
print 'bow vocabulary:', len(bow_transformer.vocabulary_)
'''
'''
papers_bow = bow_transformer.transform(papers['paper'])
print 'sparse matrix shape:', papers_bow.shape
tfidf_transformer = TfidfTransformer().fit(papers_bow)
papers_tfidf = tfidf_transformer.transform(papers_bow)
#to check whether the paper is 'data' or 'non-data'
paper_cat1 = {} #for MNB model
paper_cat2 = {} #for BNB model
paper_cat3 = {} #for SGD model
for n in papers['paperName']:
paper_cat1[n] = 'Non-data'
paper_cat2[n] = 'Non-data'
paper_cat3[n] = 'Non-data'
X = papers_tfidf
y = papers['label']
kf = StratifiedKFold(n_splits=10)
cfMtx_MultiNB = np.array([[0,0],[0,0]])
cfMtx_BNB = np.array([[0,0],[0,0]])
cfMtx_SGD = np.array([[0,0],[0,0]])
print 'Start modeling...'
for train_index, test_index in kf.split(X, y):
X_test = X[test_index]
y_test = y[test_index]
paperName_test = papers['paperName'][test_index]
#Dealing with unbalanced sample
#Copying
copy = []
for i in train_index:
if y[i] == 'Data':
copy.append(i)
copy = np.array(copy)
for t in range(74):
train_index = np.hstack((train_index, copy))
X_train = X[train_index]
y_train = y[train_index]
#modeling
model1 = MultinomialNB().fit(X_train, y_train)
predict1 = model1.predict(X_test)
cfMtx_MultiNB += confusion_matrix(y_test, predict1)
for i in range(len(predict1)):
if predict1[i] == 'Data':
paper_cat1[paperName_test[test_index[i]]] = 'Data'
model2 = BernoulliNB().fit(X_train, y_train)
predict2 = model2.predict(X_test)
cfMtx_BNB += confusion_matrix(y_test, predict2)
for i in range(len(predict2)):
if predict2[i] == 'Data':
paper_cat2[paperName_test[test_index[i]]] = 'Data'
model3 = SGDClassifier().fit(X_train, y_train)
predict3 = model3.predict(X_test)
cfMtx_SGD += confusion_matrix(y_test, predict3)
for i in range(len(predict3)):
if predict3[i] == 'Data':
paper_cat3[paperName_test[test_index[i]]] = 'Data'
print 'MultinomialNB Confusion Matrix:'
print cfMtx_MultiNB
print 'BernoulliNB Confusion Matrix:'
print cfMtx_BNB
print 'SGD Confusion Matrix:'
print cfMtx_SGD
cfMtx_paper_MNB = [0, 0, 0, 0] # true positive, true negative, false positive, false negative
cfMtx_paper_BNB = [0, 0, 0, 0]
cfMtx_paper_SGD = [0, 0, 0, 0]
with open('MLpapers.csv','rU') as cf:
rd = csv.reader(cf, delimiter = ',', quotechar = '"')
header = rd.next()
for row in rd:
try:
pdfname = row[-1]
if row[-2] == 'Data':
if paper_cat1[pdfname] == 'Data':
cfMtx_paper_MNB[0] += 1
else:
cfMtx_paper_MNB[3] += 1
#print 'false negative paper num: ', row[-1]
if paper_cat2[pdfname] == 'Data':
cfMtx_paper_BNB[0] += 1
else:
cfMtx_paper_BNB[3] += 1
if paper_cat3[pdfname] == 'Data':
cfMtx_paper_SGD[0] += 1
else:
cfMtx_paper_SGD[3] += 1
else:
if paper_cat1[pdfname] == 'Non-data':
cfMtx_paper_MNB[1] += 1
else:
cfMtx_paper_MNB[2] += 1
if paper_cat2[pdfname] == 'Non-data':
cfMtx_paper_BNB[1] += 1
else:
cfMtx_paper_BNB[2] += 1
if paper_cat3[pdfname] == 'Non-data':
cfMtx_paper_SGD[1] += 1
else:
cfMtx_paper_SGD[2] += 1
except:
print 'key Error:', pdfname
print 'MNB:',cfMtx_paper_MNB
print 'BNB:',cfMtx_paper_BNB
print 'SGD:',cfMtx_paper_SGD
'''