-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmachineLearing.py
213 lines (175 loc) · 6.55 KB
/
machineLearing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import matplotlib.pyplot as plt
import csv, unicodedata,re, sys
from textblob import TextBlob
import pandas
import sklearn
import cPickle
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB
from sklearn.svm import SVC, LinearSVC
from sklearn.metrics import classification_report, f1_score, accuracy_score, confusion_matrix
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold, cross_val_score, train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import learning_curve
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC
from nltk.corpus import stopwords
papers = pandas.read_csv('./papers400_whole.csv', delimiter=',', quotechar='|',
names=["paperName","paper","label"])
#sentences = pandas.read_csv('./MLpapers_sentences.csv', delimiter=',', quotechar='|',
# names=["paper", "label","paperName"])
def split_into_lemmas(message):
try:
message = message.encode('utf-8').lower()
except:
print type(message)
sys.exit()
words = TextBlob(message).words
# for each word, take its "base form" = lemma
stopWords = set(stopwords.words('english'))
wordsRaw = [word.lemma for word in words]
wordsOut = []
for word in wordsRaw:
if len(word) == 1:
continue
if word in stopWords:
continue
p = re.compile(r'\W')
check_digit = p.split(word)
digit = True
for i in check_digit:
if not i.isdigit():
digit = False
if digit:
continue
wordsOut.append(word)
return wordsOut
'''
#try to use boosted data words
data = []
for i in range(len(papers['label'])):
if papers['label'][i] == 'Data':
data.append(papers['paper'][i])
whole_paper_nondata = []
for i in range(len(papers['paper'])):
if papers['label'][i] == 'Non-data':
whole_paper_nondata.append(papers['paper'][i])
print 'len non-data',len(whole_paper_nondata)
data = ' '.join(data)
test_sample = [data] + whole_paper_nondata
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(papers['paper'])
papers_bow = bow_transformer.transform(test_sample)
tfidf_transformer = TfidfTransformer().fit(papers_bow)
#----------------------
'''
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(papers['paper'])
print 'bow vocabulary:', len(bow_transformer.vocabulary_)
papers_bow = bow_transformer.transform(papers['paper'])
print 'sparse matrix shape:', papers_bow.shape
'''
#test the tfidf changes
test_text = "we crawled 5000 packages from Alexa's to 10000 websites"
test_bow = bow_transformer.transform([test_text])
#tfidf_transformer = TfidfTransformer().fit(papers_bow)
test_tfidf = tfidf_transformer.transform(test_bow)
for i in range(len(test_tfidf.indices)):
print bow_transformer.get_feature_names()[test_tfidf.indices[i]], test_tfidf.data[i]
'''
tfidf_transformer = TfidfTransformer().fit(papers_bow)
papers_tfidf = tfidf_transformer.transform(papers_bow)
X = papers_tfidf
y = papers['label']
kf = StratifiedKFold(n_splits=10)
cfMtx_MultiNB = np.array([[0,0],[0,0]])
cfMtx_BNB = np.array([[0,0],[0,0]])
cfMtx_SGD = np.array([[0,0],[0,0]])
cfMtx_SVC = np.array([[0,0],[0,0]])
cfMtx_GNB = np.array([[0,0],[0,0]])
paper_cat1 = {} #for MNB model
paper_cat2 = {} #for BNB model
paper_cat3 = {} #for SGD model
paper_cat4 = {} #for SVC model
paper_cat5 = {} #for GNB model
overall = {}
for n in papers['paperName']:
paper_cat1[n] = 'Non-data'
paper_cat2[n] = 'Non-data'
paper_cat3[n] = 'Non-data'
paper_cat4[n] = 'Non-data'
paper_cat5[n] = 'Non-data'
overall[n] = 0
for train_index, test_index in kf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
paperName_test = papers['paperName'][test_index]
model1 = MultinomialNB(alpha=0.4).fit(X_train, y_train)
predict1 = model1.predict(X_test)
cfMtx_MultiNB += confusion_matrix(y_test, predict1)
model2 = BernoulliNB().fit(X_train, y_train)
predict2 = model2.predict(X_test)
cfMtx_BNB += confusion_matrix(y_test, predict2)
model3 = SGDClassifier().fit(X_train, y_train)
predict3 = model3.predict(X_test)
cfMtx_SGD += confusion_matrix(y_test, predict3)
model4 = LinearSVC().fit(X_train, y_train)
predict4 = model4.predict(X_test)
cfMtx_SVC += confusion_matrix(y_test, predict4)
model5 = GaussianNB().fit(X_train.toarray(), y_train)
predict5 = model5.predict(X_test.toarray())
cfMtx_GNB += confusion_matrix(y_test, predict5)
for i in range(len(predict1)):
if predict1[i] == 'Data':
paper_cat1[paperName_test[test_index[i]]] = 'Data'
if predict2[i] == 'Data':
paper_cat2[paperName_test[test_index[i]]] = 'Data'
if predict3[i] == 'Data':
paper_cat3[paperName_test[test_index[i]]] = 'Data'
if predict4[i] == 'Data':
paper_cat4[paperName_test[test_index[i]]] = 'Data'
if predict5[i] == 'Data':
paper_cat5[paperName_test[test_index[i]]] = 'Data'
print 'MultinomialNB Confusion Matrix:'
print cfMtx_MultiNB
print 'BernoulliNB Confusion Matrix:'
print cfMtx_BNB
print 'SGD Confusion Matrix:'
print cfMtx_SGD
print 'SVC Confusion Matrix:'
print cfMtx_SVC
print 'GaussianNB Confusion Matrix:'
print cfMtx_GNB
for pdf in overall.keys():
if paper_cat1[pdf] == 'Data':
overall[pdf] += 1
if paper_cat2[pdf] == 'Data':
overall[pdf] += 1
if paper_cat3[pdf] == 'Data':
overall[pdf] += 1
if paper_cat4[pdf] == 'Data':
overall[pdf] += 1
if paper_cat5[pdf] == 'Data':
overall[pdf] += 1
cfMtx_overall = [0, 0, 0, 0] # true positive, true negative, false positive, false negative
with open('MLpapers400.csv','rU') as cf:
rd = csv.reader(cf, delimiter = ',', quotechar = '"')
header = rd.next()
for row in rd:
try:
pdfname = row[-1]
if row[-2] == 'Data':
if overall[pdfname] > 1:
cfMtx_overall[0] += 1
else:
cfMtx_overall[3] += 1
#print pdfname
else:
if overall[pdfname] <= 1 :
cfMtx_overall[1] += 1
else:
cfMtx_overall[2] += 1
except:
print 'key Error:', pdfname
print 'overAll:',cfMtx_overall