forked from sevamoo/SOMPY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsompy.py
1209 lines (1061 loc) · 43.1 KB
/
sompy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Vahid Moosavi 2015 05 12 09:04 pm
#Chair For Computer Aided Architectural Design, ETH Zurich
# Future Cities Lab
#www.vahidmoosavi.com
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.gridspec as gridspec
import numexpr as ne
from time import time
import scipy.spatial as spdist
import timeit
import sys
from sklearn.externals.joblib import Parallel, delayed
from sklearn.externals.joblib import load, dump
import tempfile
import shutil
import os
import itertools
from scipy.sparse import csr_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition import PCA
from sklearn import neighbors
from matplotlib.colors import LogNorm
from matplotlib import cm
import matplotlib
import pandas as pd
class SOM(object):
def __init__(self,name,Data, mapsize = None, norm_method = 'var',initmethod = 'pca',neigh='Guassian'):
"""
name and data, neigh== Bubble or Guassian
"""
self.name = name
self.data_raw = Data
if norm_method == 'var':
Data = normalize(Data, method=norm_method)
self.data = Data
else:
self.data = Data
self.dim = Data.shape[1]
self.dlen = Data.shape[0]
self.set_topology(mapsize = mapsize)
self.set_algorithm(initmethod = initmethod)
self.calc_map_dist()
self.neigh = neigh
#Slow for large data sets
#self.set_data_labels()
#set SOM topology
def set_topology(self, mapsize = None, mapshape = 'planar', lattice = 'rect', mask = None, compname = None):
"""
all_mapshapes = ['planar','toroid','cylinder']
all_lattices = ['hexa','rect']
"""
self.mapshape = mapshape
self.lattice = lattice
#to set mask
if mask == None:
self.mask = np.ones([1,self.dim])
else:
self.mask = mask
#to set map size
if mapsize == None:
tmp = int(round(np.sqrt(self.dlen)))
self.nnodes = tmp
self.mapsize = [int(3./5*self.nnodes), int(2./5*self.nnodes)]
else:
if len(mapsize)==2:
if np.min(mapsize) == 1:
self.mapsize = [1, np.max(mapsize)]
else:
self.mapsize = mapsize
elif len(mapsize) == 1:
s = int (mapsize[0]/2)
self.mapsize = [1 ,mapsize[0]]
print 'input was considered as the numbers of nodes'
print 'map size is [{0},{1}]'.format(s,s)
self.nnodes = self.mapsize[0]*self.mapsize[1]
# to set component names
if compname == None:
try:
cc = list()
for i in range(0,self.dim):
cc.append ('Variable-'+ str(i+1))
self.compname = np.asarray(cc)[np.newaxis,:]
except:
pass
print 'no data yet: plesae first set trainign data to the SOM'
else:
try:
dim = getattr(self,'dim')
if len(compname) == dim:
self.compname = np.asarray(compname)[np.newaxis,:]
else:
print 'compname should have the same size'
except:
pass
print 'no data yet: plesae first set trainign data to the SOM'
#Set labels of the training data
# it should be in the format of a list of strings
def set_data_labels(self, dlabel = None):
if dlabel == None:
try:
dlen = (getattr(self,'dlen'))
cc = list()
for i in range(0,dlen):
cc.append ('dlabel-'+ str(i))
self.dlabel = np.asarray(cc)[:, np.newaxis]
except:
pass
print 'no data yet: plesae first set trainign data to the SOM'
else:
try:
dlen = (getattr(self,'dlen'))
if dlabel.shape == (1,dlen):
self.dlabel = dlabel.T#[:,np.newaxis]
elif dlabel.shape == (dlen,1):
self.dlabel = dlabel
elif dlabel.shape == (dlen,):
self.dlabel = dlabel[:, np.newaxis]
else:
print 'wrong lable format'
except:
pass
print 'no data yet: plesae first set trainign data to the SOM'
#calculating the grid distance, which will be called during the training steps
#currently just works for planar grids
def calc_map_dist(self):
cd = getattr(self, 'nnodes')
UD2 = np.zeros((cd, cd))
for i in range(cd):
UD2[i,:] = grid_dist(self, i).reshape(1,cd)
self.UD2 = UD2
def set_algorithm(self, initmethod = 'pca', algtype = 'batch', neighborhoodmethod = 'gaussian', alfatype = 'inv', alfaini = .5, alfafinal = .005):
"""
initmethod = ['random', 'pca']
algos = ['seq','batch']
all_neigh = ['gaussian','manhatan','bubble','cut_gaussian','epanechicov' ]
alfa_types = ['linear','inv','power']
"""
self.initmethod = initmethod
self.algtype = algtype
self.alfaini = alfaini
self.alfafinal = alfafinal
self.neigh = neighborhoodmethod
###################################
#visualize map
def view_map(self, what = 'codebook', which_dim = 'all', pack= 'Yes', text_size = 2.8,save='No', save_dir = 'empty',grid='No',text='Yes',cmap='None',COL_SiZe=6):
mapsize = getattr(self, 'mapsize')
if np.min(mapsize) >1:
if pack == 'No':
view_2d(self, text_size, which_dim = which_dim, what = what)
else:
# print 'hi'
view_2d_Pack(self, text_size, which_dim = which_dim,what = what,save = save, save_dir = save_dir, grid=grid,text=text,CMAP=cmap,col_sz=COL_SiZe)
elif np.min(mapsize) == 1:
view_1d(self, text_size, which_dim = which_dim, what = what)
################################################################################
# Initialize map codebook: Weight vectors of SOM
def init_map(self):
dim = 0
n_nod = 0
if getattr(self, 'initmethod')=='random':
#It produces random values in the range of min- max of each dimension based on a uniform distribution
mn = np.tile(np.min(getattr(self,'data'), axis =0), (getattr(self, 'nnodes'),1))
mx = np.tile(np.max(getattr(self,'data'), axis =0), (getattr(self, 'nnodes'),1))
setattr(self, 'codebook', mn + (mx-mn)*(np.random.rand(getattr(self, 'nnodes'), getattr(self, 'dim'))))
elif getattr(self, 'initmethod') == 'pca':
codebooktmp = lininit(self) #it is based on two largest eigenvalues of correlation matrix
setattr(self, 'codebook', codebooktmp)
else:
print 'please select a corect initialization method'
print 'set a correct one in SOM. current SOM.initmethod: ', getattr(self, 'initmethod')
print "possible init methods:'random', 'pca'"
#Main loop of training
def train(self, trainlen = None, n_job = 1, shared_memory = 'no',verbose='on'):
t0 = time()
data = getattr(self, 'data')
nnodes = getattr(self, 'nnodes')
dlen = getattr(self, 'dlen')
dim = getattr(self, 'dim')
mapsize = getattr(self, 'mapsize')
mem = np.log10(dlen*nnodes*dim)
#print 'data len is %d and data dimension is %d' % (dlen, dim)
#print 'map size is %d, %d' %(mapsize[0], mapsize[1])
#print 'array size in log10 scale' , mem
#print 'nomber of jobs in parallel: ', n_job
#######################################
#initialization
if verbose=='on':
print
print 'initialization method = %s, initializing..' %getattr(self, 'initmethod')
print
t0 = time()
self.init_map()
if verbose=='on':
print 'initialization done in %f seconds' % round(time()-t0 , 3 )
########################################
#rough training
if verbose=='on':
print
batchtrain(self, njob = n_job, phase = 'rough', shared_memory = 'no',verbose=verbose)
if verbose=='on':
print
#######################################
#Finetuning
if verbose=='on':
print
batchtrain(self, njob = n_job, phase = 'finetune', shared_memory = 'no',verbose=verbose)
err = np.mean(getattr(self, 'bmu')[1])
if verbose=='on':
# or verbose == 'off':
# print
ts = round(time() - t0, 3)
print
print "Total time elapsed: %f secodns" %ts
print "final quantization error: %f" %err
if verbose=='final':
# or verbose == 'off':
# print
ts = round(time() - t0, 3)
print
print "Total time elapsed: %f secodns" %ts
print "final quantization error: %f" %err
#to project a data set to a trained SOM and find the index of bmu
#It is based on nearest neighborhood search module of scikitlearn, but it is not that fast.
def project_data(self, data):
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
clf = neighbors.KNeighborsClassifier(n_neighbors = 1)
labels = np.arange(0,codebook.shape[0])
clf.fit(codebook, labels)
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
data = normalize_by(data_raw, data, method='var')
#data = normalize(data, method='var')
#plt.hist(data[:,2])
Predicted_labels = clf.predict(data)
return Predicted_labels
def predict_by(self, data, Target, K =5, wt= 'distance'):
"""
‘uniform’
"""
# here it is assumed that Target is the last column in the codebook
#and data has dim-1 columns
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
dim = codebook.shape[1]
ind = np.arange(0,dim)
indX = ind[ind != Target]
X = codebook[:,indX]
Y = codebook[:,Target]
n_neighbors = K
clf = neighbors.KNeighborsRegressor(n_neighbors, weights = wt)
clf.fit(X, Y)
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
dimdata = data.shape[1]
if dimdata == dim:
data[:,Target] == 0
data = normalize_by(data_raw, data, method='var')
data = data[:,indX]
elif dimdata == dim -1:
data = normalize_by(data_raw[:,indX], data, method='var')
#data = normalize(data, method='var')
Predicted_values = clf.predict(data)
Predicted_values = denormalize_by(data_raw[:,Target], Predicted_values)
return Predicted_values
def predict(self, X_test, K =5, wt= 'distance'):
"""
‘uniform’
"""
#Similar to SKlearn we assume that we have X_tr, Y_tr and X_test
# here it is assumed that Target is the last column in the codebook
#and data has dim-1 columns
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
dim = codebook.shape[1]
Target = data_raw.shape[1]-1
X_train = codebook[:,:Target]
Y_train= codebook[:,Target]
n_neighbors = K
clf = neighbors.KNeighborsRegressor(n_neighbors, weights = wt)
clf.fit(X_train, Y_train)
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
X_test = normalize_by(data_raw[:,:Target], X_test, method='var')
Predicted_values = clf.predict(X_test)
Predicted_values = denormalize_by(data_raw[:,Target], Predicted_values)
return Predicted_values
def find_K_nodes(self, data, K =5):
from sklearn.neighbors import NearestNeighbors
# we find the k most similar nodes to the input vector
codebook = getattr(self, 'codebook')
neigh = NearestNeighbors(n_neighbors = K)
neigh.fit(codebook)
data_raw = getattr(self,'data_raw')
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
data = normalize_by(data_raw, data, method='var')
return neigh.kneighbors(data)
def ind_to_xy(self, bm_ind):
msize = getattr(self, 'mapsize')
rows = msize[0]
cols = msize[1]
#bmu should be an integer between 0 to no_nodes
out = np.zeros((bm_ind.shape[0],3))
out[:,2] = bm_ind
out[:,0] = rows-1-bm_ind/cols
out[:,0] = bm_ind/cols
out[:,1] = bm_ind%cols
return out.astype(int)
def cluster(self,method='Kmeans',n_clusters=8):
import sklearn.cluster as clust
km= clust.KMeans(n_clusters=n_clusters)
labels = km.fit_predict(denormalize_by(self.data_raw, self.codebook, n_method = 'var'))
setattr(self,'cluster_labels',labels)
return labels
def hit_map(self,data=None):
#First Step: show the hitmap of all the training data
# print 'None'
data_tr = getattr(self, 'data_raw')
proj = self.project_data(data_tr)
msz = getattr(self, 'mapsize')
coord = self.ind_to_xy(proj)
#this is not an appropriate way, but it works
coord[:,0] = msz[0]-coord[:,0]
###############################
fig = plt.figure(figsize=(msz[1]/5,msz[0]/5))
ax = fig.add_subplot(111)
ax.xaxis.set_ticks([i for i in range(0,msz[1])])
ax.yaxis.set_ticks([i for i in range(0,msz[0])])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.grid(True,linestyle='-', linewidth=.5)
a = plt.hist2d(coord[:,1], coord[:,0], bins=(msz[1],msz[0]),alpha=.0,norm = LogNorm(),cmap=cm.jet)
# clbar = plt.colorbar()
x = np.arange(.5,msz[1]+.5,1)
y = np.arange(.5,msz[0]+.5,1)
X, Y = np.meshgrid(x, y)
area = a[0].T*12
plt.scatter(X, Y, s=area, alpha=0.2,c='b',marker='o',cmap='jet',linewidths=3, edgecolor = 'r')
plt.scatter(X, Y, s=area, alpha=0.9,c='None',marker='o',cmap='jet',linewidths=3, edgecolor = 'r')
plt.xlim(0,msz[1])
plt.ylim(0,msz[0])
if data != None:
proj = self.project_data(data)
msz = getattr(self, 'mapsize')
coord = self.ind_to_xy(proj)
a = plt.hist2d(coord[:,1], coord[:,0], bins=(msz[1],msz[0]),alpha=.0,norm = LogNorm(),cmap=cm.jet)
# clbar = plt.colorbar()
x = np.arange(.5,msz[1]+.5,1)
y = np.arange(.5,msz[0]+.5,1)
X, Y = np.meshgrid(x, y)
area = a[0].T*50
plt.scatter(X, Y, s=area, alpha=0.2,c='b',marker='o',cmap='jet',linewidths=3, edgecolor = 'r')
plt.scatter(X, Y, s=area, alpha=0.9,c='None',marker='o',cmap='jet',linewidths=3, edgecolor = 'r')
plt.xlim(0,msz[1])
plt.ylim(0,msz[0])
plt.show()
def hit_map_cluster_number(self,data=None):
if hasattr(self, 'cluster_labels'):
codebook = getattr(self, 'cluster_labels')
# print 'yesyy'
else:
print 'clustering based on default parameters...'
codebook = self.cluster()
msz = getattr(self, 'mapsize')
fig = plt.figure(figsize=(msz[1]/2.5,msz[0]/2.5))
ax = fig.add_subplot(111)
# ax.xaxis.set_ticklabels([])
# ax.yaxis.set_ticklabels([])
# ax.grid(True,linestyle='-', linewidth=.5)
if data == None:
data_tr = getattr(self, 'data_raw')
proj = self.project_data(data_tr)
coord = self.ind_to_xy(proj)
cents = self.ind_to_xy(np.arange(0,msz[0]*msz[1]))
for i, txt in enumerate(codebook):
ax.annotate(txt, (cents[i,1],cents[i,0]),size=10, va="center")
if data != None:
proj = self.project_data(data)
coord = self.ind_to_xy(proj)
x = np.arange(.5,msz[1]+.5,1)
y = np.arange(.5,msz[0]+.5,1)
cents = self.ind_to_xy(proj)
# cents[:,1] = cents[:,1]+.2
# print cents.shape
label = codebook[proj]
for i, txt in enumerate(label):
ax.annotate(txt, (cents[i,1],cents[i,0]),size=10, va="center")
plt.imshow(codebook.reshape(msz[0],msz[1])[::],alpha=.5)
# plt.pcolor(codebook.reshape(msz[0],msz[1])[::-1],alpha=.5,cmap='jet')
plt.show()
return cents
def view_map_dot(self,colormap=None,cols=None,save='No',save_dir='',text_size=8):
if colormap==None:
colormap = plt.cm.get_cmap('jet_r')
data = self.data_raw
proj = self.project_data(data)
coords = self.ind_to_xy(proj)[:,:2]
fig = plt.figure()
if cols==None:
cols=8
rows = data.shape[1]/cols+1
for i in range(data.shape[1]):
plt.subplot(rows,cols,i+1)
mn = data[:,i].min()
mx = data[:,i].max()
plt.scatter(coords[:,1],self.mapsize[0]-1-coords[:,0],c=data[:,i],vmax=mx,vmin=mn,s=180,marker='.',edgecolor='None', cmap=colormap ,alpha=1)
eps = .75
plt.xlim(0-eps,self.mapsize[1]-1+eps)
plt.ylim(0-eps,self.mapsize[0]-1+eps)
plt.axis('off')
plt.title(self.compname[0][i])
font = {'size' : text_size}
plt.rc('font', **font)
plt.axis('on')
plt.xticks([])
plt.yticks([])
plt.tight_layout()
# plt.colorbar(sc,ticks=np.round(np.linspace(mn,mx,5),decimals=1),shrink=0.6)
plt.subplots_adjust(hspace = .16,wspace=.05)
fig.set_size_inches(20,20)
if save=='Yes':
if save_dir != 'empty':
fig.savefig(save_dir, transparent=False, dpi=200)
else:
add = '/Users/itadmin/Desktop/SOM_dot.png'
print 'save directory: ', add
fig.savefig(add, transparent=False, dpi=200)
def predict_Probability(self, data, Target, K =5):
# here it is assumed that Target is the last column in the codebook #and data has dim-1 columns
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
dim = codebook.shape[1]
ind = np.arange(0,dim)
indX = ind[ind != Target]
X = codebook[:,indX]
Y = codebook[:,Target]
n_neighbors = K
clf = neighbors.KNeighborsRegressor(n_neighbors, weights = 'distance')
clf.fit(X, Y)
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
dimdata = data.shape[1]
if dimdata == dim:
data[:,Target] == 0
data = normalize_by(data_raw, data, method='var')
data = data[:,indX]
elif dimdata == dim -1:
data = normalize_by(data_raw[:,indX], data, method='var')
#data = normalize(data, method='var')
weights,ind= clf.kneighbors(data, n_neighbors=K, return_distance=True)
weights = 1./weights
sum_ = np.sum(weights,axis=1)
weights = weights/sum_[:,np.newaxis]
labels = np.sign(codebook[ind,Target])
labels[labels>=0]=1
#for positives
pos_prob = labels.copy()
pos_prob[pos_prob<0]=0
pos_prob = pos_prob*weights
pos_prob = np.sum(pos_prob,axis=1)[:,np.newaxis]
#for negatives
neg_prob = labels.copy()
neg_prob[neg_prob>0]=0
neg_prob = neg_prob*weights*-1
neg_prob = np.sum(neg_prob,axis=1)[:,np.newaxis]
#Predicted_values = clf.predict(data)
#Predicted_values = denormalize_by(data_raw[:,Target], Predicted_values)
return np.concatenate((pos_prob,neg_prob),axis=1)
def node_Activation(self, data, wt= 'distance',Target = None):
"""
‘uniform’
"""
if Target == None:
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
clf = neighbors.KNeighborsClassifier(n_neighbors = getattr(self, 'nnodes'))
labels = np.arange(0,codebook.shape[0])
clf.fit(codebook, labels)
# the codebook values are all normalized
#we can normalize the input data based on mean and std of original data
data = normalize_by(data_raw, data, method='var')
weights,ind= clf.kneighbors(data)
##Softmax function
weights = 1./weights
S_ = np.sum(np.exp(weights),axis=1)[:,np.newaxis]
weights = np.exp(weights)/S_
return weights , ind
#
def para_bmu_find(self, x, y, njb = 1):
dlen = x.shape[0]
Y2 = None
Y2 = np.einsum('ij,ij->i', y, y)
bmu = None
b = None
#here it finds BMUs for chunk of data in parallel
t_temp = time()
b = Parallel(n_jobs=njb, pre_dispatch='3*n_jobs')(delayed(chunk_based_bmu_find)\
(self, x[i*dlen // njb:min((i+1)*dlen // njb, dlen)],y, Y2) \
for i in xrange(njb))
#print 'bmu finding: %f seconds ' %round(time() - t_temp, 3)
t1 = time()
bmu = np.asarray(list(itertools.chain(*b))).T
#print 'bmu to array: %f seconds' %round(time() - t1, 3)
del b
return bmu
#First finds the Voronoi set of each node. It needs to calculate a smaller matrix. Super fast comparing to classic batch training algorithm
# it is based on the implemented algorithm in som toolbox for Matlab by Helsinky university
def update_codebook_voronoi(self, training_data, bmu, H, radius):
#bmu has shape of 2,dlen, where first row has bmuinds
# we construct ud2 from precomputed UD2 : ud2 = UD2[bmu[0,:]]
nnodes = getattr(self, 'nnodes')
dlen = getattr(self ,'dlen')
dim = getattr(self, 'dim')
New_Codebook = np.empty((nnodes, dim))
inds = bmu[0].astype(int)
# print 'bmu', bmu[0]
# fig = plt.hist(bmu[0],bins=100)
# plt.show()
row = inds
col = np.arange(dlen)
val = np.tile(1,dlen)
P = csr_matrix( (val,(row,col)), shape=(nnodes,dlen) )
S = np.empty((nnodes, dim))
S = P.dot(training_data)
#assert( S.shape == (nnodes, dim))
#assert( H.shape == (nnodes, nnodes))
# H has nnodes*nnodes and S has nnodes*dim ---> Nominator has nnodes*dim
#print Nom
Nom = np.empty((nnodes,nnodes))
Nom = H.T.dot(S)
#assert( Nom.shape == (nnodes, dim))
nV = np.empty((1,nnodes))
nV = P.sum(axis = 1).reshape(1, nnodes)
# print 'nV', nV
# print 'H'
# print H
#assert(nV.shape == (1, nnodes))
Denom = np.empty((nnodes,1))
Denom = nV.dot(H.T).reshape(nnodes, 1)
# print 'Denom'
# print Denom
#assert( Denom.shape == (nnodes, 1))
New_Codebook = np.divide(Nom, Denom)
# print 'codebook'
# print New_Codebook.sum(axis=1)
Nom = None
Denom = None
#assert (New_Codebook.shape == (nnodes,dim))
#setattr(som, 'codebook', New_Codebook)
return np.around(New_Codebook, decimals = 6)
# we will call this function in parallel for different number of jobs
def chunk_based_bmu_find(self, x, y, Y2):
dim = x.shape[1]
dlen = x.shape[0]
nnodes = y.shape[0]
bmu = np.empty((dlen,2))
#it seems that smal batches for large dlen is really faster:
# that is because of ddata in loops and n_jobs. for large data it slows down due to memory needs in parallel
blen = min(50,dlen)
i0 = 0;
d = None
t = time()
while i0+1<=dlen:
Low = (i0)
High = min(dlen,i0+blen)
i0 = i0+blen
ddata = x[Low:High+1]
d = np.dot(y, ddata.T)
d *= -2
d += Y2.reshape(nnodes,1)
bmu[Low:High+1,0] = np.argmin(d, axis = 0)
bmu[Low:High+1,1] = np.min(d, axis = 0)
del ddata
d = None
return bmu
#Batch training which is called for rought training as well as finetuning
def batchtrain(self, njob = 1, phase = None, shared_memory = 'no', verbose='on'):
t0 = time()
nnodes = getattr(self, 'nnodes')
dlen = getattr(self, 'dlen')
dim = getattr(self, 'dim')
mapsize = getattr(self, 'mapsize')
#############################################
# seting the parameters
initmethod = getattr(self,'initmethod')
mn = np.min(mapsize)
if mn == 1:
mpd = float(nnodes*10)/float(dlen)
else:
mpd = float(nnodes)/float(dlen)
ms = max(mapsize[0],mapsize[1])
if mn == 1:
ms = ms/2.
#Based on somtoolbox, Matlab
#case 'train', sTrain.trainlen = ceil(50*mpd);
#case 'rough', sTrain.trainlen = ceil(10*mpd);
#case 'finetune', sTrain.trainlen = ceil(40*mpd);
if phase == 'rough':
#training length
trainlen = int(np.ceil(30*mpd))
#radius for updating
if initmethod == 'random':
radiusin = max(1, np.ceil(ms/3.))
radiusfin = max(1, radiusin/6.)
# radiusin = max(1, np.ceil(ms/1.))
# radiusfin = max(1, radiusin/2.)
elif initmethod == 'pca':
radiusin = max(1, np.ceil(ms/8.))
radiusfin = max(1, radiusin/4.)
elif phase == 'finetune':
#train lening length
#radius for updating
if initmethod == 'random':
trainlen = int(np.ceil(50*mpd))
radiusin = max(1, ms/12.) #from radius fin in rough training
radiusfin = max(1, radiusin/25.)
# radiusin = max(1, ms/2.) #from radius fin in rough training
# radiusfin = max(1, radiusin/2.)
elif initmethod == 'pca':
trainlen = int(np.ceil(40*mpd))
radiusin = max(1, np.ceil(ms/8.)/4)
radiusfin = 1#max(1, ms/128)
radius = np.linspace(radiusin, radiusfin, trainlen)
##################################################
UD2 = getattr(self, 'UD2')
New_Codebook_V = np.empty((nnodes, dim))
New_Codebook_V = getattr(self, 'codebook')
#print 'data is in shared memory?', shared_memory
if shared_memory == 'yes':
data = getattr(self, 'data')
Data_folder = tempfile.mkdtemp()
data_name = os.path.join(Data_folder, 'data')
dump(data, data_name)
data = load(data_name, mmap_mode='r')
else:
data = getattr(self, 'data')
#X2 is part of euclidean distance (x-y)^2 = x^2 +y^2 - 2xy that we use for each data row in bmu finding.
#Since it is a fixed value we can skip it during bmu finding for each data point, but later we need it calculate quantification error
X2 = np.einsum('ij,ij->i', data, data)
if verbose=='on':
print '%s training...' %phase
print 'radius_ini: %f , radius_final: %f, trainlen: %d' %(radiusin, radiusfin, trainlen)
neigh_func = getattr(self,'neigh')
for i in range(trainlen):
if neigh_func == 'Guassian':
#in case of Guassian neighborhood
H = np.exp(-1.0*UD2/(2.0*radius[i]**2)).reshape(nnodes, nnodes)
if neigh_func == 'Bubble':
# in case of Bubble function
# print radius[i], UD2.shape
# print UD2
H = l(radius[i],np.sqrt(UD2.flatten())).reshape(nnodes, nnodes) + .000000000001
# print H
t1 = time()
bmu = None
bmu = self.para_bmu_find(data, New_Codebook_V, njb = njob)
if verbose=='on':
print
#updating the codebook
t2 = time()
New_Codebook_V = self.update_codebook_voronoi(data, bmu, H, radius)
#print 'updating nodes: ', round (time()- t2, 3)
if verbose=='on':
print "epoch: %d ---> elapsed time: %f, quantization error: %f " %(i+1, round(time() - t1, 3),np.mean(np.sqrt(bmu[1] + X2)))
setattr(self, 'codebook', New_Codebook_V)
bmu[1] = np.sqrt(bmu[1] + X2)
setattr(self, 'bmu', bmu)
def grid_dist(self,bmu_ind):
"""
som and bmu_ind
depending on the lattice "hexa" or "rect" we have different grid distance
functions.
bmu_ind is a number between 0 and number of nodes-1. depending on the map size
bmu_coord will be calculated and then distance matrix in the map will be returned
"""
try:
lattice = getattr(self, 'lattice')
except:
lattice = 'hexa'
print 'lattice not found! Lattice as hexa was set'
if lattice == 'rect':
return rect_dist(self,bmu_ind)
elif lattice == 'hexa':
try:
msize = getattr(self, 'mapsize')
rows = msize[0]
cols = msize[1]
except:
rows = 0.
cols = 0.
pass
#needs to be implemented
print 'to be implemented' , rows , cols
return np.zeros((rows,cols))
def rect_dist(self,bmu):
#the way we consider the list of nodes in a planar grid is that node0 is on top left corner,
#nodemapsz[1]-1 is top right corner and then it goes to the second row.
#no. of rows is map_size[0] and no. of cols is map_size[1]
try:
msize = getattr(self, 'mapsize')
rows = msize[0]
cols = msize[1]
except:
pass
#bmu should be an integer between 0 to no_nodes
if 0<=bmu<=(rows*cols):
c_bmu = int(bmu%cols)
r_bmu = int(bmu/cols)
else:
print 'wrong bmu'
#calculating the grid distance
if np.logical_and(rows>0 , cols>0):
r,c = np.arange(0, rows, 1)[:,np.newaxis] , np.arange(0,cols, 1)
dist2 = (r-r_bmu)**2 + (c-c_bmu)**2
return dist2.ravel()
else:
print 'please consider the above mentioned errors'
return np.zeros((rows,cols)).ravel()
def view_2d(self, text_size,which_dim='all', what = 'codebook'):
msz0, msz1 = getattr(self, 'mapsize')
if what == 'codebook':
if hasattr(self, 'codebook'):
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
codebook = denormalize_by(data_raw, codebook)
else:
print 'first initialize codebook'
if which_dim == 'all':
dim = getattr(self, 'dim')
indtoshow = np.arange(0,dim).T
ratio = float(dim)/float(dim)
ratio = np.max((.35,ratio))
sH, sV = 16,16*ratio*1
plt.figure(figsize=(sH,sV))
elif type(which_dim) == int:
dim = 1
indtoshow = np.zeros(1)
indtoshow[0] = int(which_dim)
sH, sV = 6,6
plt.figure(figsize=(sH,sV))
elif type(which_dim) == list:
max_dim = codebook.shape[1]
dim = len(which_dim)
ratio = float(dim)/float(max_dim)
#print max_dim, dim, ratio
ratio = np.max((.35,ratio))
indtoshow = np.asarray(which_dim).T
sH, sV = 16,16*ratio*1
plt.figure(figsize=(sH,sV))
no_row_in_plot = dim/6 + 1 #6 is arbitrarily selected
if no_row_in_plot <=1:
no_col_in_plot = dim
else:
no_col_in_plot = 6
axisNum = 0
compname = getattr(self, 'compname')
norm = matplotlib.colors.normalize(vmin = np.mean(codebook.flatten())-1*np.std(codebook.flatten()), vmax = np.mean(codebook.flatten())+1*np.std(codebook.flatten()), clip = True)
while axisNum <dim:
axisNum += 1
ax = plt.subplot(no_row_in_plot, no_col_in_plot, axisNum)
ind = int(indtoshow[axisNum-1])
mp = codebook[:,ind].reshape(msz0, msz1)
pl = plt.pcolor(mp[::-1],norm = norm)
# pl = plt.imshow(mp[::-1])
plt.title(compname[0][ind])
font = {'size' : text_size*sH/no_col_in_plot}
plt.rc('font', **font)
plt.axis('off')
plt.axis([0, msz0, 0, msz1])
ax.set_yticklabels([])
ax.set_xticklabels([])
plt.colorbar(pl)
plt.show()
def view_2d_Pack(self, text_size,which_dim='all', what = 'codebook',save='No', grid='Yes', save_dir = 'empty',text='Yes',CMAP='None',col_sz=None):
import matplotlib.cm as cm
msz0, msz1 = getattr(self, 'mapsize')
if CMAP=='None':
CMAP= cm.RdYlBu_r
if what == 'codebook':
if hasattr(self, 'codebook'):
codebook = getattr(self, 'codebook')
data_raw = getattr(self,'data_raw')
codebook = denormalize_by(data_raw, codebook)
else:
print 'first initialize codebook'
if which_dim == 'all':
dim = getattr(self, 'dim')
indtoshow = np.arange(0,dim).T
ratio = float(dim)/float(dim)
ratio = np.max((.35,ratio))
sH, sV = 16,16*ratio*1
# plt.figure(figsize=(sH,sV))
elif type(which_dim) == int:
dim = 1
indtoshow = np.zeros(1)
indtoshow[0] = int(which_dim)
sH, sV = 6,6
# plt.figure(figsize=(sH,sV))
elif type(which_dim) == list:
max_dim = codebook.shape[1]
dim = len(which_dim)
ratio = float(dim)/float(max_dim)
#print max_dim, dim, ratio
ratio = np.max((.35,ratio))
indtoshow = np.asarray(which_dim).T
sH, sV = 16,16*ratio*1
# plt.figure(figsize=(sH,sV))
# plt.figure(figsize=(7,7))
no_row_in_plot = dim/col_sz + 1 #6 is arbitrarily selected
if no_row_in_plot <=1:
no_col_in_plot = dim
else:
no_col_in_plot = col_sz
axisNum = 0
compname = getattr(self, 'compname')
h = .1
w= .1
fig = plt.figure(figsize=(no_col_in_plot*2.5*(1+w),no_row_in_plot*2.5*(1+h)))
# print no_row_in_plot, no_col_in_plot
norm = matplotlib.colors.Normalize(vmin = np.median(codebook.flatten())-1.5*np.std(codebook.flatten()), vmax = np.median(codebook.flatten())+1.5*np.std(codebook.flatten()), clip = False)
DD = pd.Series(data = codebook.flatten()).describe(percentiles=[.03,.05,.1,.25,.3,.4,.5,.6,.7,.8,.9,.95,.97])
norm = matplotlib.colors.Normalize(vmin = DD.ix['3%'], vmax = DD.ix['97%'], clip = False)
while axisNum <dim:
axisNum += 1
ax = fig.add_subplot(no_row_in_plot, no_col_in_plot, axisNum)
ind = int(indtoshow[axisNum-1])
mp = codebook[:,ind].reshape(msz0, msz1)
if grid=='Yes':
pl = plt.pcolor(mp[::-1])
elif grid=='No':
plt.imshow(mp[::-1],norm = None,cmap=CMAP)
# plt.pcolor(mp[::-1])
plt.axis('off')
if text=='Yes':
plt.title(compname[0][ind])
font = {'size' : text_size}
plt.rc('font', **font)
plt.axis([0, msz0, 0, msz1])
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.xaxis.set_ticks([i for i in range(0,msz1)])
ax.yaxis.set_ticks([i for i in range(0,msz0)])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.grid(True,linestyle='-', linewidth=0.5,color='k')
# plt.grid()
# plt.colorbar(pl)
# plt.tight_layout()
plt.subplots_adjust(hspace = h,wspace=w)
if what == 'cluster':
if hasattr(self, 'cluster_labels'):
codebook = getattr(self, 'cluster_labels')
else:
print 'clustering based on default parameters...'
codebook = self.cluster()
h = .2
w= .001
fig = plt.figure(figsize=(msz0/2,msz1/2))
ax = fig.add_subplot(1, 1, 1)
mp = codebook[:].reshape(msz0, msz1)
if grid=='Yes':
pl = plt.pcolor(mp[::-1])
elif grid=='No':
plt.imshow(mp[::-1])
# plt.pcolor(mp[::-1])
plt.axis('off')
if text=='Yes':
plt.title('clusters')
font = {'size' : text_size}
plt.rc('font', **font)
plt.axis([0, msz0, 0, msz1])
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.xaxis.set_ticks([i for i in range(0,msz1)])
ax.yaxis.set_ticks([i for i in range(0,msz0)])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])