|
247 | 247 | }
|
248 | 248 | ],
|
249 | 249 | "source": [
|
250 |
| - "# read in pickled simulated parameters, mu, M, epsilon\n", |
| 250 | + "# read in pickled simulated parameters, mu, M, epsilon, created in examples-sim-gLV.ipynb\n", |
251 | 251 | "num_species = 5\n",
|
252 | 252 | "with open(\"params-s5.pkl\", \"rb\") as f:\n",
|
253 | 253 | " params = pickle.load(f)\n",
|
|
818 | 818 | "#inference.plot_posterior(idata)\n",
|
819 | 819 | "\n",
|
820 | 820 | "\n",
|
821 |
| - "\n", |
822 |
| - "\n", |
823 |
| - "#nX = num_species\n", |
824 |
| - "#n_obs = times.shape[0] - 1\n", |
825 |
| - "#noise_stddev = 0.1\n", |
826 |
| - "\n", |
827 |
| - "# Params for shrinkage on M_ij (non diagonal elements)\n", |
828 |
| - "#DA = nX*nX - nX\n", |
829 |
| - "#DA0 = 3 # expected number of non zero entries in M_ij\n", |
830 |
| - "#N = n_obs - 2\n", |
831 |
| - "\n", |
832 |
| - "#inference = infergLVbayes(X, F, mu_prior, M_prior, DA=DA, DA0=DA0, N=N, noise_stddev=noise_stddev)\n", |
833 |
| - "#idata = inference.run_bayes_gLV_shrinkage()\n", |
834 |
| - "\n", |
835 | 821 | "# print summary\n",
|
836 | 822 | "summary = az.summary(idata, var_names=[\"mu_hat\", \"M_ii_hat\", \"M_ij_hat\", \"M_hat\", \"sigma\"])\n",
|
837 | 823 | "print(summary[[\"mean\", \"sd\", \"r_hat\"]])\n",
|
|
862 | 848 | },
|
863 | 849 | {
|
864 | 850 | "cell_type": "code",
|
865 |
| - "execution_count": 8, |
| 851 | + "execution_count": null, |
866 | 852 | "id": "c6d6c2df",
|
867 | 853 | "metadata": {
|
868 | 854 | "ExecuteTime": {
|
|
1108 | 1094 | "#inference.plot_posterior_pert(idata)\n",
|
1109 | 1095 | "\n",
|
1110 | 1096 | "\n",
|
1111 |
| - "\n", |
1112 |
| - "\n", |
1113 |
| - "#nX = num_species\n", |
1114 |
| - "#n_obs = times.shape[0] - 1\n", |
1115 |
| - "#noise_stddev = 0.1\n", |
1116 |
| - "\n", |
1117 |
| - "# Params for shrinkage on M_ij (non diagonal elements)\n", |
1118 |
| - "#DA = nX*nX - nX\n", |
1119 |
| - "#DA0 = 3 # expected number of non zero entries in M_ij\n", |
1120 |
| - "#N = n_obs - 2\n", |
1121 |
| - "\n", |
1122 |
| - "#inference = infergLVbayes(X, F, mu_prior, M_prior, DA=DA, DA0=DA0, N=N, noise_stddev=noise_stddev, epsilon=epsilon)\n", |
1123 |
| - "#idata = inference.run_bayes_gLV_shrinkage_pert()\n", |
1124 |
| - "\n", |
1125 | 1097 | "# print summary\n",
|
1126 | 1098 | "summary = az.summary(idata, var_names=[\"mu_hat\", \"M_ii_hat\", \"M_ij_hat\", \"M_hat\", \"epsilon_hat\", \"sigma\"])\n",
|
1127 | 1099 | "print(summary[[\"mean\", \"sd\", \"r_hat\"]])\n",
|
|
0 commit comments