This repository was archived by the owner on Oct 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQHO_Euler_mod.py
106 lines (106 loc) · 2.82 KB
/
QHO_Euler_mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import matplotlib.pyplot as plt
import numpy as np
from modsim import *
def nxt_point_RK4(i,param):#using RK4
p=param.phi
dp=param.dphi
ddp=param.ddphi
U=param.U
u=U[i]#our U cordinate
du=U[2]-U[1]#a small unit in which we evaluate the equations
np=p[i]+dp[i]*du#
ndp=dp[i]+du*ddp[i]
eps=param.eps
'''
k1 is rate of slope change at the begining of interval
dk1 is change in slope with k1 as rate od change of slope
k2 is rate the rate of change of slope if dk1 is the change in slope
in one interval du
'''
k1=(u**2-eps)*(p[i])#k1,k2,k3,k4 at specific positions
dk1=k1*du#change in dpsi due to k1+dpsi
k2=((u+du/2)**2)*(p[i]+dk1*du/2)
'''The right-end bracket denotes the new psi value at
mid point of interval'''
dk2=k2*du
k3=((u+du/2)**2)*(p[i]+dk2*du/2)
dk3=k3*du
k4=((u+du)**2-eps)*(p[i]+dk3*du)
nddp=(k1+2*k2+2*k3+k4)/6
p.append(np)#*(2.718)**(-u**2))
dp.append(ndp)
ddp.append(nddp)
def nxt_point(i,param):
p=param.phi
dp=param.dphi
ddp=param.ddphi
U=param.U
u=U[i]
du=U[2]-U[1]
np=p[i]+dp[i]*du
ndp=dp[i]+du*ddp[i]
eps=param.eps
nddp=(u**2-eps)*p[i]
p.append(np)#*(2.718)**(-u**2))
dp.append(ndp)
ddp.append(nddp)
def make_initials(phi_0,dphi_0):
phi=[]
dphi=[]
ddphi=[]
ddphi_0=(X[0]**2-eps)*phi_0
phi.append(phi_0)
dphi.append(dphi_0)
ddphi.append(ddphi_0)
return phi,dphi,ddphi
def run_eq(parameter):
phi_0,dphi_0=parameter.phi_0,parameter.dphi_0
U=parameter.U
phi,dphi,ddphi=make_initials(phi_0,dphi_0)
param_n=Params(phi=phi,dphi=dphi,ddphi=ddphi,
U=U,eps=parameter.eps)
d=SweepSeries(index=U)
max=0
for i in range(len(U)-1):
nxt_point(i,param_n)
#print(U[i],phi[i],dphi[i],ddphi[i])
d[U[i]]=phi[i]
if(phi[i]>max):
max=phi[i]
return d,phi/max,dphi,ddphi
def Run_multiple(params,eps_range):
for i in eps_range:
params.eps=i
phi,dphi,ddphi=run_eq(params)
plot(phi)
h=6.63*10**(-34)
w=10**(-3)
m=10**(-31)
alpha=(h/(m*w))**(1/2)
X=np.linspace(-20,20,10**4)#here X is not the absolute cordinate it is x/alpha
U=X/alpha
du=U[2]-U[1]
n=0
E=h*w*(1/2+n)
eps=E/(h*w/2)
#eps=2*n+1#eps = E/(h*w/2)
phi_0=1*10**(-30)
dphi_0=1*10**(-3)#first defferential of phi
parameters=Params(eps=eps,phi_0=phi_0,dphi_0=dphi_0,
U=X,du=du)
#rang=np.arange(1,6,1)
#Run_multiple(parameters,rang)
'''for i in range(len(X)-1):
nxt_point(i,X,phi,dphi,ddphi)'''
parameters.eps=1
d,phi,dphi,ddphi=run_eq(parameters)
plot(X,phi)
plt.show()
#Init=State(phi=phi_0,dphi=dphi_0,ddphi=ddphi_0,x=X[0])
#Data=SweepFrame(columns=Init.index)
#Data.row[X[0]]=Init
#for x in X:
# try:
# Data.row[x+dx]=nxt_state(Data.row[x])
# except:
# plot(Data.phi)