-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecidable.v
214 lines (164 loc) · 4.49 KB
/
Decidable.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
(** ** Decidability *)
(** This file contains definition and facts regarding synthetic decidability
from the Coq Library of Undecidability Proofs. *)
Require Import Util.
Definition dec (P : Prop) := {P} + {~P}.
Definition ldec (P : Prop) := P \/ ~P.
Definition decidable {X} (p : X -> Prop) := exists f : X -> bool, forall x, p x <-> f x = true.
Definition ldecidable {X} (p : X -> Prop) := forall x, p x \/ ~ p x.
Definition eq_dec X := forall x y : X, dec (x = y).
Definition reduction {X Y} (f : X -> Y) (P : X -> Prop) (Q : Y -> Prop) := forall x, P x <-> Q (f x).
Definition reduces {X Y} (P : X -> Prop) (Q : Y -> Prop) := exists f : X -> Y, reduction f P Q.
Notation "P ⪯ Q" := (reduces P Q) (at level 70).
Existing Class eq_dec.
Definition tsat (f : nat -> bool) := exists n, f n = true.
Definition stable P := ~~P -> P.
Definition MP := forall f, stable (tsat f).
Existing Class dec.
Coercion dec2bool {P} (d: dec P) := if d then true else false.
Definition Dec (X: Prop) {d: dec X} : dec X := d.
Lemma Dec_reflect (X: Prop) (d: dec X) :
is_true (Dec X) <-> X.
Proof.
destruct d as [A|A]; cbv in *; intuition congruence.
Qed.
Lemma Dec_auto (X: Prop) (d: dec X) :
X -> is_true (Dec X).
Proof.
destruct d as [A|A]; cbn; intuition congruence.
Qed.
Global Hint Extern 4 =>
match goal with
| [ |- dec ((fun _ => _) _) ] => cbn
end : typeclass_instances.
Instance dec_eq_dec X `{eq_dec X} (x y : X) : dec (x = y) := H _ _.
Tactic Notation "decide" constr(p) :=
destruct (Dec p).
Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=
destruct (Dec p) as i.
Tactic Notation "decide" "_" :=
destruct (Dec _).
Lemma Dec_true P {H : dec P} : dec2bool (Dec P) = true -> P.
Proof.
destruct (Dec P); cbv in *; firstorder.
congruence.
Qed.
Lemma Dec_false P {H : dec P} : dec2bool (Dec P) = false -> ~P.
Proof.
destruct (Dec P); cbv in *; firstorder.
congruence.
Qed.
Global Hint Extern 4 =>
match goal with
[ H : dec2bool (Dec ?P) = true |- _ ] => apply Dec_true in H
| [ H : dec2bool (Dec ?P) = true |- _ ] => apply Dec_false in H
end : core.
Structure eqType := EqType {
eqType_X :> Type;
eqType_dec : eq_dec eqType_X }.
Arguments EqType X {_} : rename.
Canonical Structure eqType_CS X (A: eq_dec X) := EqType X.
Existing Instance eqType_dec.
Instance True_dec :
dec True.
Proof.
unfold dec; tauto.
Qed.
Instance False_dec :
dec False.
Proof.
unfold dec; tauto.
Qed.
Instance impl_dec (X Y : Prop) :
dec X -> dec Y -> dec (X -> Y).
Proof.
unfold dec; tauto.
Qed.
Instance and_dec (X Y : Prop) :
dec X -> dec Y -> dec (X /\ Y).
Proof.
unfold dec; tauto.
Qed.
Instance or_dec (X Y : Prop) :
dec X -> dec Y -> dec (X \/ Y).
Proof.
unfold dec; tauto.
Qed.
Instance not_dec (X : Prop) :
dec X -> dec (~ X).
Proof.
unfold not. unfold dec. tauto.
Qed.
Instance iff_dec (X Y : Prop) :
dec X -> dec Y -> dec (X <-> Y).
Proof.
unfold iff. unfold dec. tauto.
Qed.
Lemma decidable_if X (p : X -> Prop) :
(forall x, dec (p x)) -> decidable p.
Proof.
intros H. exists (fun x => if H x then true else false).
split; now destruct (H x).
Qed.
Lemma decidable_ext X (p1 p2 : X -> Prop) :
(forall x, p1 x <-> p2 x) -> decidable p1 -> decidable p2.
Proof.
intros H [f Hf]. exists f. firstorder.
Qed.
Instance unit_eq_dec :
eq_dec unit.
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance bool_eq_dec :
eq_dec bool.
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance nat_eq_dec :
eq_dec nat.
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance prod_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X * Y).
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance list_eq_dec X :
eq_dec X -> eq_dec (list X).
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance sum_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X + Y).
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance option_eq_dec X :
eq_dec X -> eq_dec (option X).
Proof.
unfold eq_dec, dec. decide equality.
Defined.
Instance Empty_set_eq_dec:
eq_dec Empty_set.
Proof.
unfold eq_dec, dec. decide equality.
Qed.
Instance True_eq_dec:
eq_dec True.
Proof.
intros x y. destruct x,y. now left.
Qed.
Instance False_eq_dec:
eq_dec False.
Proof.
intros [].
Qed.
Lemma decidable_transport_red {X Y} (P : X -> Prop) (Q : Y -> Prop) :
P ⪯ Q -> decidable Q -> decidable P.
Proof.
intros [g Hg] [f Hf]. exists (fun y => f (g y)). intros x. split.
- intros H. apply Hf, Hg, H.
- intros H. apply Hg, Hf, H.
Qed.