-
Notifications
You must be signed in to change notification settings - Fork 22
/
main.py
248 lines (190 loc) · 5.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
'''
import the required libraries
for image processing ,building the model
and for plotting the graphs
'''
import os
import glob
import keras
import random
import sklearn
import skimage
import numpy as np
import matplotlib as plt
from keras.layers import LSTM
from skimage import transform
from keras.models import Model
from sklearn.model_selection import train_test_split
from keras.layers import Input,Dense,TimeDistributed
from keras.preprocessing.image import ImageDataGenerator,array_to_img,img_to_array,load_img
'''
initialisation of batch_size,num_classes and epochs
'''
batch_size = 15
num_classes = 2
epochs = 40
#size of each extacted frame
row_hidden = 128
col_hidden = 128
frame , row, col =(99,144,256)
'''
Loading all the Positive and negative according to the desired
file path and the load_set preprocess the data in which each frame
is extracted to a paricular size of (144,256)
'''
def load_set(img_path):
img = load_img(img_path)
tmp = skimage.color.rgb2gray(np.array(img))
tmp = transform.resize(tmp, (144, 256))
return tmp
'''
Loading all the Positive and negative according to the desired
file path and the load_set preprocess the data in which each frame
is extracted to a paricular size of (144,256) and is horizontally filpped
'''
def horizontal_flip(img_path):
img = load_img(img_path)
tmp = skimage.color.rgb2gray(np.array(img))
tmp = skimage.transform.resize(tmp, (144, 256))
tmp = np.array(tmp)
tmp = np.flip(tmp, axis = 1)
return tmp
'''
Loading all the Positive and negative files assigned to varaiable
neg and pos respectively
All files contains both the files paths
'''
pos = glob.glob( '99frames/*.mp4')
neg = glob.glob( 'negative/*.mp4')
all_files = np.concatenate((pos, neg[0:len(pos)]))
#print(len(neg),len(pos))
#print(all_files)
'''
label matrix is used to make one hot encoding ie [0 1] for
positve data and [1 0] for negative data
'''
def label_matrivalues):
n_values = np.mavalues) + 1
return np.eye(n_values)[values]
labels = np.concatenate(([1]*len(pos), [0]*len(neg[0:len(pos)])))
labels = label_matrilabels)
#print(len(labels))
def load_data1(path):
x = []
for files in os.listdir(path):
frames = []
img_path = path+"/"+files
if files !=("frame99.jpg"):
img = load_set(img_path)
x.append(img)
return x
def load_data3(path):
count = 0
x = []
for files in os.listdir(path):
frames = []
img_path = path+"/"+files
if count < 99:
count = count + 1
img = load_set(img_path)
x.append(img)
return x
def load_data2(path):
x = []
for files in os.listdir(path):
frames = []
img_path = path+"/"+files
if files !=("frame99.jpg") :
img = horizontal_flip(img_path)
x.append(img)
return x
def load_data4(path):
x = []
count =0
for files in os.listdir(path):
frames = []
img_path = path+"/"+files
if count < 99 :
count = count +1
img = horizontal_flip(img_path)
x.append(img)
return x
'''
this function used to make dataset depending upon file name
'''
def make_dataset(rand):
seq1 = np.zeros((len(rand), 99, 144, 256))
for i,fi in enumerate(rand):
print (i, fi)
if fi[9:11] == '00' :
t = load_data1(fi)
elif fi[9:13] == 'MVIH':
t = load_data3(fi)
elif fi[9:13] == 'MVI_':
t = load_data4(fi)
elif fi[9:11]=='11' :
t = load_data2(fi)
seq1[i] = t
return seq1
'''
make the x_test,x_train and validation data in ration of
(60% 20% 20%)
'''
x_train, x_t1, y_train, y_t1 = train_test_split(all_files, labels, test_size=0.40, random_state=0)
x_train = np.array(x_train); y_train = np.array(y_train)
x_testA = np.array(x_t1[int(len(x_t1)/2):]); y_testA = np.array(y_t1[int(len(y_t1)/2):])
x_testA = make_dataset(x_testA)
### valid set for model
x_testB = np.array(x_t1[:int(len(x_t1)/2)]); y_testB = np.array(y_t1[:int(len(y_t1)/2)])
x_testB = make_dataset(x_testB)
'''
making the pipeline using keras
using auto encoders(HRRN and LSTM)
'''
x =Input(shape=(frame, row, col))
encoded_rows = TimeDistributed(LSTM(row_hidden))(x)
encoded_columns =LSTM(col_hidden)(encoded_rows)
prediction = Dense(num_classes, activation='softmax')(encoded_columns)
model = Model(x, prediction)
model.compile(loss='categorical_crossentropy',
optimizer='NAdam',
metrics=['accuracy'])
model.summary()
i=0; filepath='HRNN_pretrained_model.hdf5'
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
np.random.seed(18247)
'''
training on dataset as well as validation
'''
for i in range(0, epochs):
c = list(zip(x_train, y_train))
random.shuffle(c)
x_shuff, y_shuff = zip(*c)
x_shuff = np.array(x_shuff); y_shuff=np.array(y_shuff)
x_batch = [x_shuff[i:i + batch_size] for i in range(0, len(x_shuff), batch_size)]
y_batch = [y_shuff[i:i + batch_size] for i in range(0, len(x_shuff), batch_size)]
for j,xb in enumerate(x_batch):
xx = make_dataset(xb)
yy = y_batch[j]
model.fit(xx, yy,
batch_size=len(xx),
epochs=3,
validation_data=(x_testB, y_testB),
callbacks=callbacks_list
)
loss = model.history['loss']
val_loss = model.history['val_loss']
epochs = range(epochs)
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
'''
evaluating model on test dataset
'''
scores = model.evaluate(x_testA, y_testA, verbose=0)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])