-
Notifications
You must be signed in to change notification settings - Fork 0
/
large_asl.py
476 lines (357 loc) · 12.1 KB
/
large_asl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/env python
# coding: utf-8
# In[1]:
get_ipython().run_line_magic('matplotlib', 'inline')
#
# Training a Classifier
# =====================
#
# This is it. You have seen how to define neural networks, compute loss and make
# updates to the weights of the network.
#
# Now you might be thinking,
#
# What about data?
# ----------------
#
# Generally, when you have to deal with image, text, audio or video data,
# you can use standard python packages that load data into a numpy array.
# Then you can convert this array into a ``torch.*Tensor``.
#
# - For images, packages such as Pillow, OpenCV are useful
# - For audio, packages such as scipy and librosa
# - For text, either raw Python or Cython based loading, or NLTK and
# SpaCy are useful
#
# Specifically for vision, we have created a package called
# ``torchvision``, that has data loaders for common datasets such as
# ImageNet, CIFAR10, MNIST, etc. and data transformers for images, viz.,
# ``torchvision.datasets`` and ``torch.utils.data.DataLoader``.
#
# This provides a huge convenience and avoids writing boilerplate code.
#
# For this tutorial, we will use the CIFAR10 dataset.
# It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,
# ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of
# size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size.
#
# .. figure:: /_static/img/cifar10.png
# :alt: cifar10
#
# cifar10
#
#
# Training an image classifier
# ----------------------------
#
# We will do the following steps in order:
#
# 1. Load and normalize the CIFAR10 training and test datasets using
# ``torchvision``
# 2. Define a Convolutional Neural Network
# 3. Define a loss function
# 4. Train the network on the training data
# 5. Test the network on the test data
#
# 1. Load and normalize CIFAR10
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Using ``torchvision``, it’s extremely easy to load CIFAR10.
#
#
# In[1]:
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.utils as utils
import torch.nn as nn
import torch.optim as optim
import numpy as np
from PIL import Image
import numpy as np
# import matplotlib.pyplot as plt
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1].
#
#
# <div class="alert alert-info"><h4>Note</h4><p>If running on Windows and you get a BrokenPipeError, try setting
# the num_worker of torch.utils.data.DataLoader() to 0.</p></div>
#
#
# In[2]:
# import zipfile
# with zipfile.ZipFile("asl_alphabet_test.zip", 'r') as zip_ref:
# zip_ref.extractall("alphabet_test")
# In[3]:
transformations = transforms.Compose([
transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
train_set = datasets.ImageFolder("alphabet_train", transform = transformations)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
# val_set = datasets.ImageFolder("./asl_alphabet_test", transform = transformations)
# train_loader=torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
# #trainset = torchvision.datasets.(root='./data', train=True,
# # download=True, transform=transform)
# #trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
# # shuffle=True, num_workers=2)
test_set = datasets.ImageFolder("alphabet_test", transform = transformations)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=True)
classes = ('A', 'B', 'C', 'D', 'DEL', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'NOTHING', 'O', 'P', 'Q', 'R', 'S', 'SPACE', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z')
# Let us show some of the training images, for fun.
#
#
# In[4]:
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
#show images
imshow(utils.make_grid(images))
# print labels
# print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))
for j in range(29):
print(classes[labels[j]])
# 2. Define a Convolutional Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
#
#
# In[5]:
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(44944, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 29)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
#
#
# In[6]:
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
#
#
# In[7]:
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs,labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# Let's quickly save our trained model:
#
#
# In[8]:
PATH = './large_asl_net.pth'
torch.save(net.state_dict(), PATH)
# See `here <https://pytorch.org/docs/stable/notes/serialization.html>`_
# for more details on saving PyTorch models.
#
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We have trained the network for 2 passes over the training dataset.
# But we need to check if the network has learnt anything at all.
#
# We will check this by predicting the class label that the neural network
# outputs, and checking it against the ground-truth. If the prediction is
# correct, we add the sample to the list of correct predictions.
#
# Okay, first step. Let us display an image from the test set to get familiar.
#
#
# In[14]:
dataiter = iter(test_loader)
images, labels = dataiter.next()
# print images
imshow(utils.make_grid(images))
# print(labels)
# print(test_set.class_to_idx)
for j in labels:
print(test_set.classes[j])
# Next, let's load back in our saved model (note: saving and re-loading the model
# wasn't necessary here, we only did it to illustrate how to do so):
#
#
# In[15]:
net = Net()
net.load_state_dict(torch.load(PATH))
# Okay, now let us see what the neural network thinks these examples above are:
#
#
# In[16]:
outputs = net(images)
# The outputs are energies for the 10 classes.
# The higher the energy for a class, the more the network
# thinks that the image is of the particular class.
# So, let's get the index of the highest energy:
#
#
# In[17]:
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(28)))
# The results seem pretty good.
#
# Let us look at how the network performs on the whole dataset.
#
#
# In[19]:
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in test_loader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 29 test images: %d %%' % (
100 * correct / total))
# That looks way better than chance, which is 10% accuracy (randomly picking
# a class out of 10 classes).
# Seems like the network learnt something.
#
# Hmmm, what are the classes that performed well, and the classes that did
# not perform well:
#
#
# In[ ]:
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# again no gradients needed
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print("Accuracy for class {:5s} is: {:.1f} %".format(classname,
accuracy))
# Okay, so what next?
#
# How do we run these neural networks on the GPU?
#
# Training on GPU
# ----------------
# Just like how you transfer a Tensor onto the GPU, you transfer the neural
# net onto the GPU.
#
# Let's first define our device as the first visible cuda device if we have
# CUDA available:
#
#
# In[ ]:
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# # Assuming that we are on a CUDA machine, this should print a CUDA device:
# print(device)
# The rest of this section assumes that ``device`` is a CUDA device.
#
# Then these methods will recursively go over all modules and convert their
# parameters and buffers to CUDA tensors:
#
# .. code:: python
#
# net.to(device)
#
#
# Remember that you will have to send the inputs and targets at every step
# to the GPU too:
#
# .. code:: python
#
# inputs, labels = data[0].to(device), data[1].to(device)
#
# Why don't I notice MASSIVE speedup compared to CPU? Because your network
# is really small.
#
# **Exercise:** Try increasing the width of your network (argument 2 of
# the first ``nn.Conv2d``, and argument 1 of the second ``nn.Conv2d`` –
# they need to be the same number), see what kind of speedup you get.
#
# **Goals achieved**:
#
# - Understanding PyTorch's Tensor library and neural networks at a high level.
# - Train a small neural network to classify images
#
# Training on multiple GPUs
# -------------------------
# If you want to see even more MASSIVE speedup using all of your GPUs,
# please check out :doc:`data_parallel_tutorial`.
#
# Where do I go next?
# -------------------
#
# - :doc:`Train neural nets to play video games </intermediate/reinforcement_q_learning>`
# - `Train a state-of-the-art ResNet network on imagenet`_
# - `Train a face generator using Generative Adversarial Networks`_
# - `Train a word-level language model using Recurrent LSTM networks`_
# - `More examples`_
# - `More tutorials`_
# - `Discuss PyTorch on the Forums`_
# - `Chat with other users on Slack`_
#
#
#
# In[ ]: