-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmidas_hack.py
80 lines (66 loc) · 3.15 KB
/
midas_hack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Controlnet_aux 0.0.3 doesn't support normals, this is a copy
# of the latest version of the file from the controlnet_aux repo
# FIXME(ja): remove this when controlnet_aux is released with normals
import cv2
import numpy as np
from PIL import Image
import torch
import os
from huggingface_hub import hf_hub_download
from einops import rearrange
from controlnet_aux.midas.api import MiDaSInference
from controlnet_aux.util import HWC3
class MidasDetector:
def __init__(self, model_type="dpt_hybrid", model_path=None):
self.model = MiDaSInference(model_type=model_type, model_path=model_path)
if torch.cuda.is_available():
self.model = self.model.cuda()
@classmethod
def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None):
if pretrained_model_or_path == "lllyasviel/ControlNet":
filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
else:
filename = filename or "dpt_hybrid-midas-501f0c75.pt"
if os.path.isdir(pretrained_model_or_path):
model_path = os.path.join(pretrained_model_or_path, filename)
else:
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
return cls(model_type=model_type, model_path=model_path)
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False):
input_type = "np"
if isinstance(input_image, Image.Image):
input_image = np.array(input_image)
input_type = "pil"
input_image = HWC3(input_image)
image_depth = input_image
with torch.no_grad():
image_depth = torch.from_numpy(image_depth).float()
if torch.cuda.is_available():
image_depth = image_depth.cuda()
image_depth = image_depth / 127.5 - 1.0
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
depth = self.model(image_depth)[0]
depth_pt = depth.clone()
depth_pt -= torch.min(depth_pt)
depth_pt /= torch.max(depth_pt)
depth_pt = depth_pt.cpu().numpy()
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
depth_np = depth.cpu().numpy()
if depth_and_normal:
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
z = np.ones_like(x) * a
x[depth_pt < bg_th] = 0
y[depth_pt < bg_th] = 0
normal = np.stack([x, y, z], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
if input_type == "pil":
depth_image = Image.fromarray(depth_image)
depth_image = depth_image.convert("RGB")
if depth_and_normal:
normal_image = Image.fromarray(normal_image)
if depth_and_normal:
return depth_image, normal_image
else:
return depth_image